

CoCo-C

An RSDOS C Compiler Development System
for the
Tandy Color Computer

User's Manual

(C) Copynght 1992 by Infinitum Technology
Ultra Editor and Line Editor copyright by Bob van der Poel

All rights reserved. No part of this manual or software may be reproduced, copied,
or transmitted in any form without prior written permission from the author. While
every precaution has been taken to ensure the correctness of this manual and the
products that it describes, the author assumes no responsibility for any errors or
omissions in either this document or the C Compiler package which it describes.
No liability is assumed for damages resulting from the use of the C Compiler
package described in this document.

License Statement

The CoCo-C Development System software and this documentation
are protected by copyright by Infinitum Technology. The programs
"Ultra Editor” and "Line Editor" are protected by copyright by Bob van
der Poel Software. Copies may be made by the original purchaser for
archival purposes only. Any other copies are made in violation of
federal law. No part of this software may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise
without the wntten permission of Infinitum Technology.

Infinitum Technology grants you (the licensed owner of the CoCo-C
Development System) the right to incorporate library routines into
your programs. You may distribute your programs that contain the
CoCo-C Library Functions in executable form without restriction or
fee, but you may not give away or sell any part of the CoCo-C
Development System source code. You are not, of course, restricted
from distributing your own source code.

S RO

Ho 80 =1 G O s 2 19 =

o

DO DD DD bt ek pd sk ek ek ke
NHEOOLONoWON AN

Table of Contents

CoCo-C Overview

Introduction .

Scope and References .
Hardisks and Ramdisks
Start-up / Operation .
The Command Coordinator .

Ultra Editor (CoCo 3)

Introduction . . .

Loading and Runmng the Editor .

Main Menu Commands

Main Menu Options

Editor Commands .

Entering Text .

Help . . :

Alternate Key Definitions .

Key Repeat . : .

Cursor Movement Commands .

Find Commands

Change Commands

Jump Commands .

Editing Commands

Block Commands

Buffers . .

Editing Modes

Macro Commands . .

Miscellaneous Commands

Errors . ,
Making Modifications to the BASIC Dmver .
Some Additional Notes Coe e e

et b ek ek ek
{
s GO DN DD -

oo
-

NNMNMMNNMNMNNNNDNNNDNDDRDDD NN
1
—t e O OO QO =1 U R B QO L0 =t

0 23 O VU £0 1 1

© 00 =10 U1 0O IV

bk ek
DD bt O °

Line Editor (CoCo 2)

Loading and Running the Editor .
Options in the Command Mode
Text Editing Conventions .

Long Lines . :

File Formafts

Wildcards .

I/O Conventions

Errors

CoCo-C Compiler

Compiler Specifications

1.1 Symbeolic Names

1.2 Constants . . .

1.3 Data Type Declaratxons (vamables)
14 Arrays . Coe e e
1.5 Pointers .

1.6 Imitializers .

1.7 Expressions

1.8 Functions . .

1.9 Program Control .

1.10 Preprocessor Commands .

1.11 Miscellaneous

Assembly Language Interface .
Stack Frame . .

Function Library . .

Start-Up / Initialization (CSTART C)
Register Usage Ce e e
Special Functions .

Special Defines . .

Using the Compiler

Error Trapping .

Creating ROM-able Code
Error Messages . .

N N s i e o e
= 0O O OTCO QO N DN ==

oo Wil
]

|
G O O W B e

)
ek

1

o

abs

atoi
atoib
basecmd
cls

cmp
coco2
coCco3
cursor
dtoi
exit
fast
fclose
fclosall
fgetc
feets
fopen
fprintf
fputc
fputs
fscanf
getc
getch
getchar
gefcurs
getityp
getkey
gets

getwidth .

1niacia
iniser

182C0C0
183C0CO

1salnum .

1salpha
1sascil
1scntri
isdigit
islower
1Sprint
ispunct
1sspace
isupper
isxdigit
itoa

CoCo-C Library Functions

111

gttt OO OTOn Quen Oy Ot Ot Ot Ot Ot On
|

1
== O WO O0=1=-30C OO DD ==

|
pd ek pmnd
O DD -t = O

Ot O
o

5-14
9-15
5-15
5-16
5-16
o-17
5-17
5-18
o-18
o9-19
o-19
5-20
o-20
5-21
5-21
o - 22
5-22
o-23
2-23
5-24
5-24
5-25
5-25

itoab
1tod
1tou
1tox
kill
left
loadm
locate
pad
peek
peekw
poke
pokew
printf
putc
putch
putchar
puts
rename
restore
reverse
rgb
rscinit
savem
scanf
serout
settrap
s1gn
slow
sprintf
sscanf
streat
strchr
stremp
strcpy
strlen
stncat
stncmp
stncpy
toascil
tolower
toupper
uain
uaout
utol
xto1

1v

5-26
0-26
o-27
o-27
o-28
5-28
2-29
5-29
d-30
5-30
5-31
0-31
5 - 32
5-32
5-33
5-34
o-34
2-35
5-35
9-36
5-36
5-37
o-37
o - 38
5-38
o -39
o -40
5-40
5-41
0-41
o-42
0-43
o-43
5-44
o-44
o-45
5-45
5-46
5-46
5-47
o-47
0-48
5-48
0-49
5-49
9-50

03 D = e

Ll g s

CoCo-ASM Assembler

Introduction .o .
Assembler Spec1ﬁcanons .
Addressing Modes .
Pseudo-ops . .

Using the Assembler .
Error Messages .

CoCo-C Library Linker

Introduction . . :
Using the Library Linker Coe .
Creating Non-Library Programs .

CoCo-C Examples

Preliminary . .

Example 1 (HELLO. C) :
Example 2 (FILELST.C) . .
Using the ASCII File Lister .

orerRa) Repria) e
'
=1 CN QO DO =t =

-] =1 =3
1
-

oD oo O OO
1 ' 1
O o e

CoCo-C Overview

1. Introduction:
CoCo-C - An RSDOS C Compiler for the TRS-80 Color Computer

CoCo-C is a complete programming environment designed to be used on a CoCo 1,
2, or 3 with a minimum of 64K of memory and at least 1 disk drive. The programs
contained within CoCo-C are: an Editor, a C Compiler, an Assembler, and a
Library Linker. All these programs run under the Co0Co-C's Command
Coordinator for speed and simplicity. The compiler is capable of producing
position independent (re-locatable) code, or absolute (ROM-able) code. All
programs created with CoCo-C are in machine language and deo not require a
"run-time" program for execution. LLOADM and EXEC is all that is needed to
run a user-created CoCo-C program. The CoCo-C Function Library supports
many of the standard C library functions along with several "special” functions
which are unique to the CoCo. CoCo-C also supports mixed programming, so
that you can combine C, Assembler and BASIC commands into one program.

The disk that comes with CoCo-C is a "flippy" disk containing the necessary
programs and files for either the CoCo 1 or 2, or the CoCo 3. The 'A' side of the
disk 1s for the CoCo 3 and the B’ side of the disk 1s for the CoCo 1 or 2. The main
difference between the CoCo 3 vs. the CoCo 1 or 2 versions, 18 the support for the 80
column screen. This is primarily found in the text editor provided on the disk.
Also, the CoCo-3's library contains more functions which take advantage of the
CoCo 3's high resolution screen formats .

The files that are contained on the supplied disk are as follows:

CC.BAS - CoCo-C's Command Coordinator

EDITOR.BAS - Full Sereen Editor (CoCo 3) or Line Editor (CoCo 1 or 2)
COMPILER.BIN - CoCo-C Compiler

ASSEMBLR.BIN - CoCo-ASM 6809 Assembler

LINKER.BIN - CoCo-C Library Linker

CLIB.BIN - re-locatable function library

CSTART.C - Start-up / initialization routines for CoCo 1, 2 or 3
CLIB.INC - function library entry table

STDIO.H - header file for CoCo’'s Standard /O

BASIC.H - header file for BASIC library functions
CHARIGC.ASM - source code for CoCo's character 1/0O

STDLIB.C - source code for Standard C library functions
FILELST.C - source code for example C application

Both the 'A’ side and the B’ side of the disk contain the same file names with
different versions for either the CoCo 3, or CoCo 1 or 2.

The CoCo-C disk is not copy-protected and may be backed up using standard
backup procedures.

1-1

CoCo-C Overview

2. Scope and References:

The purpose of this manual is to describe the specifications and operation of
CoCo-C as a compiler for the Color Computer, as opposed to being a tutorial for
the C programming language. Therefore, it is recommended if you have a
limited knowledge of C that you read the book "The C Programming Language" by
Kernighan and Ritchie.

It is also recommended, though not essential, that you have a general
understanding of 6809 assembly language programming. Two excellent books on
this topic are "6809 Assembly Language Programming"” by Lance Leventhal and
"TRS-80 Color Computer Assembly Language Programming” by William Barden
Jr.

The Editors that are contained in this package are Bob van der Poel's Ultra Editor
(CoCo 3) and Line Editor (CoCo 1 or 2). These editors were chosen because they
are easy to use, and are specifically tailored for programming environments. The
Ultra Editor features on-screen help menus and can be custom configured for
either 40 or 80 columns with choice of foreground and background colors.

All programs within this package runs under RSDOS or equivalent. The OS-9
Operating System is not required.

3. Hardisks and Ramdisks:

Since the programs within CoCo-C do not make any undocumented DOS calls, it
is possible for CoCo-C fo run on either a hard disk or RAM disk providing that the
following 1is true:

1. The hard disk or RAM disk must exactly emulate a standard CoCo disk.
(35 tracks, single sided, 18 sectors/track, 256 bytes/sector).

2. The DOS being used is 100% BASIC compatible with RSDOS disk
commands.
(ie. OPEN O,"TEST.DAT:2"AS 1)

3. The DOS being used must accept a DEFAULT DRIVE designator

This is also true for any CoCo-C user programs needing to be created on a hard
disk or RAM disk. If all the above is true, the entire contents of CoCo-C may be
copied to the desired hard disk or RAM disk. The programs will operate normally
as long as the drive containing CoCo-C is assigned as the defauit drive.

CoCo-C has been tested to work successfully with Burke & Burke's RGBDOS along
with several tested 35 track RAM disks.

1-2

CoCo-C Overview

4, Start-up/Operation:

CoCo-C 18 a collection of programming tools designed for the development of C
language programs. All of these programs are in machine language and are
executed from CoCo-C's Command Coordinator. Four steps are required to create
a C program, they are as follows:

1. Edit - for creating or editing an existing C program.

2. Compile - to convert the C code into assembly code.

3. Assemble - to create a binary image of the assembled code.

4. Link - to "merge-in" the library, making the final ML program.

After you made a backup copy of the appropriate version of CoCo-C, insert the
backup disk into the default drive and type: RUN "CC <ENTER>. This will cause
the Command Coordinator's main menu to appear on the screen. You are now
ready to begin by typing the first letter of the desired option.

Please note that the CoCo-C disk must remain in the default drive during the
entire development phase of your C program.

Note:

If you are anxious to try out your new CoCo-C package, but you're not ready
to read the entire manual at this time, you may jump ahead to the
Examples section of this manual to familiarize yourself with the
development phase of CoCo-C.

1-3

CoCo-C Overview

5. The Command Coordinator:

CoCo-C uses a command "shell" type program to coordinate the loading and
executing of the individual programs within CoCo-C. This command "shell” is
called the "Command Coordinator” and is named "CC.BAS" on your distribution
disk. It is written in BASIC and has a small machine language loader appended
to it which 1s used to load the compiler.

The purpose of the Command Coordinator is to act as the "main menu-ing”
master program, which controls all the other programs within CoCo-C. The only
program you need to run for CoCo-C is "CC.BAS". All programs within CoCo-C
not only execute from the coordinator, but return to it as well.

To run the Command Coordinator, simply type RUN "CC <ENTER>. This will

cause the Command Coordinator's main menu to appear on the screen. From
that point on, all you have to do is enter the first letter of your selected option.

5.1 Command Coordinator options.

The available options within the Command Coordinator are as follows:

5.1.1 Edit

The Edit option loads and executes the included text editor for CoCo-C.
For the CoCo 1 or 2, this is Bob van der Poel's Line Editor. For the CoCo
3, it's Bob van der Poel's Ultra Editor. Use Edit for creating new or
editing existing C or assembly language source files. Edit may also be
used for examining the output text files created by the compiler or
assembler.

5.1.2 Compile

This is CoCo-C's C compiler. Selecting Compile will load and execute
the compiler. Use this option when you are ready to compile your C
source file.

5.1.3 Assemble

This is the CoCo-ASM assembler. Selecting Assemble will load and
execute the assembler. Since the compiler produces assembly language
files as output, this option will assemble the compiler-created file. The
Assemble option may also be used to assemble user-created source files

5.1.4 Link

The Link option loads and executes CoCo-C's Library Linker. The
purpose of Link is to "merge-in" CoCo-C's 90+ function library along

with your compiled and assembled program. This will produce a stand-
alone relocatable (by defauilt) binary file ready for LOADM and EXEC.

1-4

CoCo-C Overview

5.1.4 Qut

The Quit option simply exits the Command Coordinator and returns you
to BASIC. This option should only be used as a temporary exit, with the
intent to return back to the Command Coordinator. You may use this
option to do some housekeeping (ie. checking the directory, killing files,
setting the default drive #, etc.). Just don't do anything that may destroy

the Command Coordinator's contents (ie. LOAD(M), CLEAR, etc.). To
return to back to the Command Coordinator, simply type RUN.

5.1.5 Re-Boot

This is the best way to exit the Command Coordinator. This will
perform a cold start on the CoCo. Use this option when you are ready to
test your compiled and assembled program.

5.2 Customizing the Command Coordinator;

The BASIC portion of the Command Coordinator may be modified to suit
your needs. The CoCo 3 version of the Command Coordinator assumes an
RBG monitor and defaults to an 80 column white on blue text screen when
loading the Compiler, Assembler, or Linker.

This information is contained in line #360 in the "CC.BAS" file, and may be
modified if desired.

For modifications available to the Editor, refer to the Ultra Editor section of
this manual.

1-5

Ultra Editor

1. Introduction:

ULTRA EDITOR is a machine language program appended to a short BASIC
loader. The loader takes care of simple housekeeping chores like opening and
closing files. By using BASIC for these tasks compatibility between different
DOSes and DOS versions is maintained. The loader also permits user
modifications and makes the making of backup copies much easier.

ULTRA EDITOR's main purpose is for the editing of source code for compilers
and assemblers. But of course, it can be put to many other uses. You may find
the macro abilities of ULTRA EDITOR to be useful in editing various text files, etc.
as well as BASIC programs -- just remember that ULTRA EDITOR does not like
lines longer than 128 characters.

2. Loading and Running the Editor:

ULTRA EDITOR is first invoked by running CoCo-C's cofnm&nd coordinator.
Type RUN "CC <ENTER>. After the menu appears, select E (for edit). This will
load and execute the editor.

The first thing you'll see is a copyright notice and a prompt for a filename. This
prompt is for the initial file you wish to edit. If you press <ENTER> without a
filename you'll advance to the main menu; if you enter a filename, the file will be
loaded and you'll advance to the edit mode. Note: if the file does not exist or if an
IO error is encountered, you will also enter the edit mode with no data being read
or files created.

To put some order to this section, we'll assume that you didn't enter a filename
and are now in ULTRA EDITOR's main menu.

3. Main Menu Commands:

In the main menu you have eight options. Each one can be accessed by pressing
the key corresponding to the first letter of the choice.

Note that the top of the screen shows the current free memory in the current
buffer. In addition, if the alternate buffer has been selected, a reverse video
message 'secondary buffer' will be displayed. All the commands in the main
menu act on the current buffer. More on buffers later.

3.1 Editor:

This should be pretty obvious. It takes you into edit mode (lots more on this
later!).

Ultra Editor

3.2 Read file:

This option permits the reading of a new file. Careful, the existing contents
of the buffer will be overwritten. For this reason a check is made to see if a
save has been done since last leaving the editor. If no save has been done
you'll be informed and asked to confirm your choice.

3.3 Append file:

This is the same as the 'read' option, only in this case the file will be
appended to the end of the file in memory.

3.4 Save buffer:

This option saves the buffer to disk. Also, see the comments on 'partial
save/print’ below.

3.5 Print buffer:

This option prints the buffer. If the printer is off line a message will be
printed. You must press <ENTER> or <BREAK> to return to the editor's
main menu. Also, see the comments on 'partial save/print' below.

3.6 Macro save:

This option allows you to save the macros you defined. This is done by re-
saving ULTRA EDITOR to disk. Since the buffers used for the macro

definitions are within the program, they get saved along with the program.
See section 18 for macro description.

3.7 CoCo-C Main Menu:

This option exists ULTRA EDITOR and returns you to CoCo-C's Command
Coordinator (Main Menu). The 'files not saved’ warning will be displayed if
no saves have been done.

3.8 @FILE:

The default filename will be displayed after this prompt. The default is the
last filename entered for a load or save command. It can be forced to a
different name by pressing <@> and entering a filename.

2-2

Ultra Editor

4.

Main Menu Options:

4.1 Filename Entry:

Whenever a filename 1s required, the default filename (if defined) will be
displayed at the top of the screen. If you press <ENTER> by itself the default
name will be used. This can be a great time saver when you make frequent
saves of a file. .

By default, the /TXT extension and the drive number set by the DRIVE
command will be appended to your filenames unless these items are
already present in your input. In addition, the filename DIR is reserved.
Entering DIR at a filename prompt will cause a disk directory to be
displayed. If you wish to have a directory of a drive other than the default
drive, use the format DIR:2 etc. Note the colon!

4.2 Partial Print and Save Options:

9.

If a block has been defined in the current buffer, you will be given an
additional option when you select the 'print' and 'save’ options. You'll be
asked 1f you wish the entire file to be saved/printed or only the defined block.
Respond accordingly.

Editor Commands:

Now for the good stuff!! But first a few conventions used in this documentation.

0.1

0.2

0.3

5.4

Whenever you see a key refered to in braces (ie. {A}), we are referring

to a control key combination. These keys are generated by holding down the
key marked <CTRL> and pressing the key at the same time. All valid
control key combinations result in editor commanads.

Keys referred to in pointed braces (ie, <ENTER>) mean normal keys. In
some cases a different value will be generated when the <SHIFT> key is
pressed with the key. Sometimes (see the alternate key definitions, below)
the <ALT> key will modify the keypress. If the particular <ALT>
combination is not defined, the <ALT> key will have no effect.

Every command can be aborted by pressing {(BREAK]}, Remember, this
means you hold <CTRL> down and press <BREAK>. This keypress
combination will generate a 'keyboard abort' error message at the top of
the screen.

Whenever you are in the editor, you will see a line at the top of the screen
highlighted in reverse video. This line is called the 'status line’. It advises
you of the current column position of the cursor, the current line number,
the amount of free memory available, and the current editor modes. This

2-3

Ultra Editor

line is also used for the entry of data required by some commands. In this
case 1t 15 referred to as the 'command line'.

6. Entering Text:

In many ways ULTRA EDITOR is much like a word processor editor, but in many
ways it is much different. The basic differences lie with the type of text ULTRA
EDITOR and a word processor handle. ULTRA EDITOR is a line editor. This
means that it presumes all the text is composed of lines -- unlike most word
processors which handle text as a continuous stream of characters (the printing

portion of word processors handle mundane chores like determining the end of
lines, ete.).

To enter text in ULTRA EDITOR, just move the cursor to where you want the
character to appear using the various movement commands below. Each time a
character is typed, ULTRA EDITOR first checks to see if it is command. If it is,
the command 1s executed. Otherwise, the character is placed into the buffer and
the cursor 1s moved one position to the right.

ULTRA EDITOR permits lines to a maximum length of 128 characters. A virtual
screen of 24 lines by 128 characters is maintained in memory. The horizontal
scroll built into the CoCo 3 has been utilized to permit instantaneous windowing
into any portion of this screen using etther the 40 or 80 column mode. As the

cursor moves off the screen (either left or right) the window moves to display the
additional text. '

When inserting characters on a line, the characters at the right of the line will be
lost. This will only occur of course the character at column 127 is a non-space
character. Normally you will be editing lines much shorter than 128 characters,
so the problem will not oceur,

7. Help:

Help on all the various commands i1s available to you whenever you are in the
editor. To access the help screens just press the <F1> key. Note that this key is
not active during the definition of the macro. Also, <F1> will abort commands
like a ‘change’ and a jump’'. Help consists of a number of screens, press
<ENTER> to advance from screen to screen and finally back to the editor.

8. Alternate Key Definitions:

By using the <ALT> key combination, the following characters can be generated:

2-4

<ALT> key: _character: ASCII value: men

<ALT/1> i $7C (124)

<ALT/2> ~ $7E (126)

<ALT/8> [$6B (91) remember as the '(' key

<ALT/9>] $5D (93) remember as the ')’ key

<ALT/,> { $7B (123) remember as the '<' key

<ALT/.> } $7D (125) remember as the '>" key

<ALT/UP ARROW> $5E (94) this i1s displayed as the up
arrow on the screen, but it is
really a 'A', and this is how it
appears on most printers.

<ALT/LEFT ARROW> $5F (95) this is displayed as a left arrow

- on the screen, but it is really an

'underline’, and this is how it
appears on most printers.

<ALT/DOWN ARROW> $60 (96) this is displayed as a '*' on the

screen, It's correct ASCII
representation is really "'
Note that this character has
special uses, detailed later.

Other changes from the standard Color Computer key definitions:

<SHIFT/@> \ $5C (92)

All the other keys follow the standard Color Computer convention. The
differences in the true ASCII representations of the ALT/ARROW combinations
are due to the hardware of the Color Computer, not ULTRA EDITOR.

9. Key Repeat:

When in the editor all keys will repeat if they are held down for more than 1/2
second. Characters generated with the <CTRL> key will NOT repeat. When
typing in filenames etc. from ULTRA EDITOR's main menu, the above keyboard
redefinitions are not active.

2-3

Uitra Editor

10. Cursor Movement Commands:

Once text has been loaded into the buffer (or typed in), there are many powerful
cursor movement commands to help you get to where you want to be.

<LEFT ARROW>

<RIGHT ARROW>

<SHIFT/LEFT ARROW>

{LEFT ARROW}

{(RIGHT ARROW]}

<CLEAR>

<SHIFT/CLEAR>
<UP ARROW>
<DOWN ARROW:>
<SHIFT/UP ARROW>

<SHIFT/DOWN ARROW>

{UP ARROW]

(DOWN ARROW)
{1

-}

moves the cursor one position to the left. Of course
you can't move past column 0.

moves the cursor one position to the right. Again
you can't move past column 127.

moves the cursor to the start of the current line.
The start of the line is the first non-space
character on the line. On a blank line the cursor
is moved to column O.

this moves the cursor to column 0, the absolute left
of the screen. '

moves the cursor to column 127, the absolute left of
the screen.

moves the cursor to the next word (actually the
next space character).

moves the cursor to the start of the previous word.
moves the cursor up one line.
moves the cursor down one line.

moves the cursor up one line and to the start of
this line.

moves the cursor down one line and to the start of
this line.

moves the cursor up 22 lines in the file (a page
command).

moves the cursor down 22 lines in a file.

moves the cursor to the start of the file. (This is
easier to remember as a {*}, for START.)

moves the cursor to the end of the file. (The logic
here is that '-' is beside :'.)

2-6

Ultra Editor

11.

Find Commands:

ULTRA EDITOR has a number of commands to help you find text in a file. Please
note these comments on the ”* character. They apply to CHANGE and JUMP
commands as well.

The A

character (generated by <ALT> <DOWN ARROW>) has three special uses

when entering commands, depending upon where it is in the entered text.

11.1 If a #~ is the first character on the line, upper and lower case

characters will be identical. (ie. In a FIND command both A text'
and '"TEXT' would match on 'text’, 'TEXT' and "TeXt').

11.2 If a # is in the middle of the entered text (ie. not the first position or the last

non-space character) it is treated as a wild card character. This means
that TEAT would match TEST and TEXT.

11.3 A » as the last character on a line is used to include traiiing' blanks in the

B}

input. Normally trailing blanks are dropped into the bit bucket, but this
option is included in case you wish to match something like 'TEXT . If you
input ‘TEXT <ENTER>' the last space will not be included. By using "TEXT
A"<ENTER>' the space will be part of the input; the * will be eaten by the bit
bucket monster. Note that if you wish to have a wild card character as the
last character on a line, then you'll have to use two N's. The last one gets
eaten, the second last is retained as a wild card. A similar sequence 1s
required if you wish to have a wildcard character as the first character in
your input. Since the first # is interpreted as an ignore case directive, two
A's are required -- the first one ignores case, the second is a wild card. Due
to this limitation, you cannot use the wildcard in the first position and have
the search case-sensitive.

Find a match. You will be prompted for a target to search for on the
command line. The buffer will be scanned backwards from the current
cursor position,

This is the same as FIND, except that the text is scanned backwards from
the current cursor position.

Note that text entered with {F} and {B} is saved in a buffer for the next two
commands. This buffer is cleared when you access ULTRA EDITOR's main

menu.

(N} Find the next occurrence of the pattern entered with {F} or {B} (forward

from the current cursor position).

{L} Find the previous occurrence of the pattern entered with {F} or {B}

(backward from the current cursor position).

2-7

Ultra

Editor

12,
{C}

{Al

(G}

13.

Change Commands:

Change a pattern with a replacement pattern. You'll be prompted first
with a 'Change:’ then a To:'. The first match from the current cursor
position will be changed. If no match is found, an error message will be
displayed on the status line.

Change again. Just like in Find, the input for Change is saved in a buffer.
This is a different buffer than the ones used by Find and Jump; it is also
cleared by exiting to ULTRA EDITOR's main menu. The {C} command is
the same as {C}, it just avoids the initial input. By combining {C}/{A} and
{F}/{N} you can have a prompted change command -- first find the
occurrence, then change it if you want.

Global change. This command accepts input just like {C}, it then changes
all occurrences from the start of the file. Essentially it is the same as going
to the start of a file, doing a {C} and then repeated {A}'s. Note that a 'no
match’ error will be generated when the last change is made. This should
be a 'no more matches' error, but in the interest of memory conservation
the error generated by {A} has been used.

Jump Commands:

The JUMP command is the quickest way for you to go from one part of your
program to another. The JUMP command has five different forms -- each
one is designed for specific applications, so please read carefully. Also,
JUMP never checks for case (ie. uppercase=lowercase), but for the sake of
consistency, the * character can be included as the first character of a
JUMP command -- it is ignored.

When the JUMP command is initiated, you will see a prompt on the command
line. Here are the various ways you can answer:

13.1 A number between 0 to 65535. This will move the cursor to the line

matching the number input. If the highest line number is less than the
number input, an error will be displayed. Note that an entry like '123TEXT"
18 interpreted as line number 123.

13.2 A string of characters corresponding to a label in an assembly language

program. For example, LABEL' will advance the cursor to a line starting
(in column 0) with the text 'LABEL'. The match must terminate with a

space, a '(' or an end-of-line. This means that the following lines would
match:

2-8

Ultra Editor

LABEL
LABEL JMP LABEL
LABEL (X,Y)

Note that LABEL1 and LABELS will not match. The search for the label is done
from the start of the buffer. If you have 2 identical labels, the second will never
be found by JUMP. If no match is found, an error message will be displayed on
the command line,.

13.3 If the input is a '<', the cursor will be moved to the 'start of block' character,
if 1t exists.

13.4 If the input is a '>', the cursor will be moved to the 'end of block’ character,
if it exists.

14. Editing Commands:

ULTRA EDITOR contains many powerful editing commands. Remember, these
commands effect the line on which the cursor is positioned. Also, all the changes
are made in a buffer. The changes are not actually inserted into the main buffer
until a non-editing command is given (ie. move cursor to next line, <ENTER>, {J}
or {C}, etc.). This means that any changes made by mistake can be cancelled with
{(BREAK].

K} Kill or delete the current line. When a line 1s killed, it is stored in a buffer

and can be restored with the {U} command -- it can't be undone with
{(BREAK].

{U} Unkill or restore a line which has been deleted with {K}. Note that a line
killed once can be unkilled any number of times. This may be useful in
duplicating a line - Kill it, Unkill it at the same position and finally, Unkill
it again at the new position.

{H} Hack line. All non-space characters from the cursor position to the end of
the line are deleted.

{Y} Yank. Delete until the next space -- essentially a word delete.

<BREAK> A true backspace. The cursor is moved one position left and
the character at the new cursor position is deleted.

<SHIFT/BREAK> Delete the character at the cursor.

{SPACE} Insert a space at the current cursor position.

2-9

Ultra_Editor

135.

Block Commands:

A number of ULTRA EDITOR commands work not in the entire text buffer, but
rather on a defined block within the buffer. Before any of the block commands will
function, a block must be defined. If no block is defined, an appropriate error
message will be displayed.

{<}

>}

(S}

Insert a begin block marker before the current line. Once the marker has
been inserted, a line will be inserted in the text. ULTRA EDITOR wiil not
permit the ingertion of a begin marker and an end marker.

Insert an end block marker before the current line. An end block marker
cannot be inserted before a begin block marker.

Delete block. The cursor will be placed at the start of the defined block, and
the block will be deleted. Careful with this command -- the block is not
saved in a buffer. As a reminder a warning message is displayed. You
must enter a word beginning with the letter 'Y’ (either 'Y or 'y’ or 'yes' are
okay) and press <ENTER> for the delete to occur. Any other entry will abort
the delete command.

Report the block size. The size of the defined block will be displayed on the
command line (a size of 0 indicates that a block has not been defined). In
addition, the current size of the text buffer will also be displayed.

NOTE: The following block commands rely on a buffer for data transfer. The
maximum size of any of these transfers is approximately 8000 characters. If the
defined block is too large, an error message will be displayed and the command
will be aborted. Use {S} to determine how much to shorten the block before
attempting the command again.

(M} Move block. The defined block will be transferred to the current cursor

R}

X}

4

position and the old block will be deleted. The block markers will also be
deleted.

Copy (Replicate) block. The defined block will be copied to the current
cursor position. The block markers will be deleted, but the old block will
remain.

Xtransfer. This command will transfer a marked block in the alternate
buffer (more on buffers later) to the current cursor position in the current
buffer. No changes are made to the data in the alternate buffer.

Delete all block markers in the current buffer.

2-10

Ultra Editor

16. Buffers:

As mentioned earlier, ULTRA EDITOR maintains two separate text buffers. The
main buffer is approximate 50,000 bytes long, the secondary buffer is
approximately 16,000 bytes long. With the {X} command it is possible to transfer
data between the two buffers.

The buffers share macro commands and the FIND and CHANGE buffers -- so
editing commands in one buffer can easily be duplicated in both buffers.

So, why would you use a secondary buffer? As in so many things with computers
we're sure that you'll find lots of uses -- uses we never thought of. But as a start,
you can edit two separate documents at the same time. Or, you could have a
program in the main buffer, read a library file into the secondary buffer and then
transfer parts of the library to different parts of the main buffer.

{@} Toggle to alternate buffer. The command line will have a * in position 40 if
the secondary buffer is active. Also, in the main menu the text secondary
buffer' will appear if it 1s active.

17. Editing Modes:

Editing can be done in either insert or overstrike mode. Insert means that a
character is inserted at the current cursor position and the text to the right of the
cursor is moved to the rnght. Overstrike means that the character at the cursor is

overlaid with a new character. In both cases, the cursor is moved one position
right after the character is inserted.

<F2> puts ULTRA EDITOR into insert mode. An 'I' wall be
displayed in the status line indicating 'Insert'.

<SHIFT/F2> puts ULTRA EDITOR into overstrike mode. An 'O’ will be
displayed in the status line indicating 'Overstrike'.

Just like BASIC, ULTRA EDITOR will read the keyboard as upper and lowercase

or just uppercase. The command line will show an 'L’ if lowercase is enabled, or
a 'U' if only uppercase is accepted.

<SHIFT/O> will toggle the upper/lower case modes.

For people writing structured code, an auto-indent feature has been included in
the ULTRA EDITOR. When enabled, this feature permits a new line to be
indented with the same number of spaces as the line before it. The feature only
functions when <ENTER> 1s used to start a new line.

{I} toggles the auto-indent feature on and off. When enabled a ->' will be
displayed an the status line.

2-11

Ultra Editor

18. Macro Commands:

One of the features which makes ULTRA EDITOR such a powerful editor is the
ability to define your own sequence of keystrokes as a one-keystroke macro. These
macro definitions can include not only standard text characters, they can also
include cursor commands, Change or Jump commands and even call other
macros. In sort, anything you can do from the keyboard can be duplicated in a
macro.

{V} Define a macro. You will be asked which macro you wish to define.
Answer with a number from 1 to 9. If you wish to edit an already defined
macro, precede the number with an 'E' (ie. €9). If the 'E’ option has been
used, the existing macro will be displayed on line 2, otherwise a blank field
will be displayed.

When typing in the macro definition a few changes to the normal editing methods
have been made. First, macro definitions are always made in overstrike mode.
This is since commands like delete, etc. no longer function (they can't function in
define and still be permitted in the definition itself). Therefore the only editing
commands available are the left and right arrow keys which move the cursor. If
you make a mistake, move the cursor to the mistake and type over it. Sorry, but
you can't insert or delete characters in the definition. Second, to exit the define
mode you must press {V} again. This makes sense since you can't define a macro
from within another macro -- and since {V} can't be used and some kind of exit
key is required; what better key to use to signal the end of the macro. Note that the
cursor can be at any position in the macro when the {V} is pressed and the entire
line will be accepted. If you are editing an existing macro and decide that you
don't want to make any changes after all, just use {BREAK] to exit -- no changes
will be made to the existing definition in this case.

With the exception of {BREAK], {V}, <LEFT ARROW> and <RIGHT ARROW> any
other keystroke may be included as part of a macro definition. Unfortunately (due
to hardware limitations in the CoCo 3) control keys will appear the same as
normal keys, but they will function differently when called. For example, if you
press either «<J> or {J} a 'J' will appear. But if you call the macro, the first
definition will cause a 'J' to appear in the text; the second will initiate a Jump

command. Pay attention to the keys you press when defining the macro. Other
keys (<ENTER>, <ARROWS>, etc.) will be displayed as "strange” characters.

A macro can only be 49 characters long. If you typed more than 49 characters in
your definition, the macro will be truncated to the first 49 characters -- no error
messages will be displayed.

Once you have defined your macros, you may save them for later use. Just use
the «Save Macros> option in the main menu to save your macro definitions.

(1}...{9) Invokes a macro. Once you have defined your macro, pressing the

<CTRL> key and the number key corresponding to the macro number
invokes the defined macro.

2-12

Ulira Editor

Macros can be very useful -- but a few examples will get you started in finding
uses of your own. Note: in these examples keystrokes generated by the <CTRL>
key will be shown in the { } format, but don't include either { or } in your definition.

18.1 If you get tired of typing a particular word in your text, just set one of the

macros to the word. For example, if you find yourself typing printf a lot,
just define macro '1' to this text. Now every time you type a {1} the word
‘printf will be typed.

18.2 Now for a more complex macro. Let's say you are using ULTRA EDITOR

for writing assembly language source code and you like all your
subroutines to start with a block which looks like this:

AKKAXEAXT A XA A A A AKX X AA XA XX A A XA AR AT KK AKKL KX KX KkK*XX%
x

* Subroutine name goes here
X

and you are tired of holding down the '*' key. You can define a macro to do
the job for you:

AKKEKAAK AT I A A AT AKX AT R AR XA XX AKX A AKX AR R XK AR A XA A XIENTER> *<ENTER>*

<ENTER>*<UP ARROW><SHIFT/RIGHT ARROW><SPACE>

In this macro, the first bunch of '*'s print the first line, the <ENTER>
advances to the next line, another '*' is printed, the next <ENTER>
advances to line 3, another '* 1s printed, the last <ENTER> advances to line
4, and the last *' is printed. Finally, the <UP ARROW> moves the cursor to
line 3, <SHIFT/RIGHT ARROW> moves the cursor to the space after the ™*

and the <SPACE> moves the cursor to the position where we want to start
our text.

18.3 This one was used when preparing the help file for ULTRA EDITOR. The

help text was typed in without the 'FCC's necessary for the assembler. A
macro was defined in the following manner:

<F2>{LEFT ARROW}FCC<SPACE>"<SHIFT/RIGHT ARROW>", C<KDOWN ARROW>

Each time this macro was invoked, the edit mode was switched to insert
(with <F2>), the cursor was moved to the start of the line, the text ' FCC ™
was typed, the cursor was moved to the end of the line, ™,0™ was typed and
the cursor was advanced to the next line.

18.4 If you are Jumping to a label a lot, you might want to define a macro as a

kJ}

Jump command.
LABEL<ENTER>

will save lots of keystrokes. Now all you need to do is hit the appropriate
control key.

2-13

Ultra Editor

18.5 Even though the keys repeat and you have many cursor keys, you may want
to scroll through some text very quickly.

If you define {9} as '<UP ARROW>{9}' you'll initiate a rapid scan up
through the text. Pressing {BREAK]} will stop the cursor.

Macros can call each other or themselves. For exampile, if you have defined {1} as
'HELLO' and {2} as 'GOODBYE' you could define {3} as {1}{2}. Now when you
press {3} 'HELLOGOODBYE' will be displayed. Another method is to have a
macro called itself {called recursion). For example, you could define {1} as
'HELLO<ENTER>{1}'. Now when vou press {1} the text ' HELLO' will be printed,
the cursor will advance to the next line and macro 1 will be cailled and 'HELLQO'
will be printed again. This procedure will continue until an error is generated
(probably memory full) or {BREAK]} is pressed (which causes its own error).

Macros can be nested up to 20 levels deep. An attempt to nest deeper than this will
cause an error.

19. Miscellaneous Commands:

By no means are any of these commands "miscellaneous” -- they just didn't seem
to fit in any of the other categories in this section of the manual.

{Ql Quits the editor to ULTRA EDITOR's main menu. This is the only way out
of ULTRA EDITOR, so don't forget about it.

(W} Toggles the display Width between 40 and 80 column modes.

<ENTER> This important command inserts a blank line below the current line.
This corresponds to the normal method of entering text in most
editors. <ENTER> has no effect on the data in the current line, this
means that the cursor may be positioned at any place in the line (it
doesn't have to be at the end).

(ENTER} This command will insert a carriage return at the current cursor
position effectively splitting the line into two lines.

{3} The opposite of {ENTER}. This command is used to append the next line to
the current line. This is the command which can be used to join lines
together.

(P} Print a page. 55 lines of text, starting at the top of the screen (not the
current cursor position) will be printed on the printer.

2-14

Ultra Editor

20. Errors:

ULTRA EDITOR can produce two types of errors. First, in the main menu,
errors will be reported in the standard BASIC format. The only errors
encountered here should be of the IO variety.

In the editor mode a number of different error messages may be encountered. In
all cases the message is displayed on the command/status line. Pressing any key
will cause the normal status line to reappear. Following are the possible errors:

20.1 BLOCK NOT DEFINED: You have attempted to execute a block command
without first defining a block. Use the {<} and {>} commands to define a
block.

20.2 BLOCK TOO LARGE FOR COPY OR MOVE: The defined block exceeds the
transfer buffer's capacity. Use {S} to find the size of the block, then reduce
the size of the block.

20.3 ATTEMPT TO COPY OVER DEFINED BLOCXK: During a Move or Copy the
cursor is within the defined block. You cannot copy/move a block onto itseif.

20.4 OPERATION TOO LARGE FOR AVAILABLE MEMORY: You have run
out of memory. This can occur when you have finished editing a line and
attempted to move to another line, or during a block move or copy.

20.5 MARKER ALREADY EXISTS: You have attempted to insert a second block

start or block end marker. Use the Jump command to find the first one and
delete it with {K].

20.6 CAN'T HAVE END BEFORE START: An attempt has been made to put a
start block marker after an end block marker, or an end block marker
before a start block marker.

20.7 FAIL, NO MATCH FOUND: The text searched for by a Jump, Change or
Find command was not found.

20.8 LINE NUMBER TOO HIGH: The number entered for a Jump command 1s
higher than the last line in the buffer.

20.9 UNABLE TO RESTORE LINE: In response to an Unkill command when
there is no data in the buffer.

20.10 KEYBOARD ABORT: Whenever {BREAK]} is pressed this error is
generated.

20.11 MACRO NESTING TOO DEEP: Macros which call themselves have done s0
more than 20 times.

2-15

Ultra_Editor

20.12 LONG LINE SPLIT: A line longer than 128 characters was split into two
shorter lines after editing.

21. Making Modifications to the BASIC Driver:

The BASIC portion of ULTRA EDITOR can be modified, if you wish. However,
you must be very careful since the majority of the program has been compressed
to save memory. Four lines have been left in an uncompressed mode especially
for your modifications:

Line 10 -- this contains the PALETTE commands fo set the foreground and
background colors for the editor. It is currently set to white on blue.

Line 20 -- this contains the PALETTE commands to set the foreground and
background colors for the status lines in the editor. The choice of blue on white
was used since it contrasts nicely with the edit screen.

Line 30 -- this line 1s currently just a remark. It can be used to set the printer
baud rate, etc.

1t is not recommended that other modifications to ULTRA EDITOR be attempted.

22. Some Additional Notes:

22.1 Entering text at the start of the file: Since you can't use the cursor keys to
move the cursor in front of the first line in the buffer, how do you insert text
in front of line 07 Position the cursor to the start of the buffer and insert a
carriage return at the start of line 0 with {ENTER}. Now edit this blank line
in the normal manner.

22.2 Entering text at the end of the file: When the editor is first entered, the
cursor will be positioned at the 'END OF FILE' marker. You must insert a
blank line to edit by pressing <ENTER> before any text can be entered.

22.3 Line numbers: ULTRA EDITOR does not number the lines in its buffers. It
maintains a line count for display on the status line and for use by Jump,
but the line numbers are not saved in the text files.

224 Files: All files generated by ULTRA EDITOR are in standard ASCII

format. When saving, file block markers are skipped. When loading,
characters below an ASCII SPACE (except for carriage returns) and
greater than ASCII 127's are skipped.

2-16

Ultra Editor

22.5 Long lines: ULTRA EDITOR permits the entry of lines with a maximum
length of 128 characters. It is, however possible to have lines in the buffer
which are longer. This could be because the file read into the buffer
contained long lines, or a Change command could alter a line's contents so
that it becomes longer than 128 characters. These long lines will be saved
during Saves, the first 128 characters will be displayed when viewing the
text, and changes made to surrounding hines will NOT affect these long
lines. When you edit a line which is longer than 128 characters, only the
first 128 characters will be transferred to the edit buffer. Your editing
commands will affect only these characters. When you insert a line into
the buffer (<ENTER>, <UP ARROW>, <DOWN ARROW>, {J}, etc.) a 'long
line split' message will appear on the status line. The screen wiil also
reformat and the rest of the line will be displayed. This newly displayed
line could still be longer than 128 characters.

2-17

Line Editor

1. Loading and Running the Editor:

The ediftor is first invoked by running CoCo-C's command coordinator. Type
RUN "CC <ENTER>. After the menu appears, select E (for edit). This will load
and execute the editor.

Once the edifor is running you will see the copyright message and a prompt for a
filename. If you wish to edit an existing file, input the name and it will be loaded.

If you press <ENTER> you will go to a hi-res screen containing the text
'COMMAND' and some numbers at the top of it.

2. Options in the Command Mode:

When you first enter the editor you will be in the command mode. This is
indicated by the status line at the top of the screen. The numbers at the right are
the numbers of free bytes in the buffer and the current line numbe;r.

In this mode you have the following options available:
2.1 Cursor movement commands.
<UP ARROW> moves the cursor up a line.
<DOWN ARROW?> moves the cursor down a line.
<P> Page up. This moves the cursor forward by 22 lines.

<0O> Page Down. This moves the cursor backward by 22 lines
(the key beside the Page key).

<*> STARt. This moves the cursor to the start of the text.

<= End. This moves the cursor to the end of the text
(the key beside STARL).

<(> Begin Block. This moves the cursor to the 'begin block' marker
(the key resembles '<').

<)> End Block. This moves the cursor to the 'end block' marker
(the key resembles >').

<J> Jump. This powerful command first prompts you for a pattern to
jump to. You may input either a word or a line number. If a
number is input, then the cursor will move to that line number. If
text is entered the program will search for a line number starting
with that word(s). An exact word match must be found. If the
search fails for a label or line number, the cursor will go to the end of
the file. Note that a search for LABEL X will only find a line starting

3-1

Lin

Edi

<N>

r

with that exact text, ie: LABEL X XYZ. A line beginning with LABEL
XX will not be matched.

Find. When you select this option, you will be prompted for a search
pattern (Find). The text will be searched from the current cursor
position for a match. If no match is found the cursor will be
positioned at the end of the text.

Find Backwards. This option is the same as <F> except that the
search will be made from the current position backwards. If no
match is found the cursor will be positioned at the beginning of the
text.

Find Next. This will find the next occurrence of the pattern last used
by <F> or .

Find Last. This will find the last (like occurrence of the pattern
last used by <F> or). '

2.2 Text editing commands:

<I>

<C>

Insert. This option puts you in the insert mode. You can now insert
a line at the current cursor position. When you have finished your

line, press <ENTER>. To leave this mode and return to the command
mode, press <BREAK>.

Edit. This option will permit editing of the existing line at the cursor.
After the edit is completed, press <ENTER>. If you decide that the
changes you have made, shouldn't be made, press <BREAK> (instead
of <ENTER>) and the line will be restored.

Kill. This command will delete (Kill) the line at the cursor. For
safety's sake, don't use the auto-repeat-key feature with this
command. If you want to delete a number of lines, use the <D>
command (see below).

Global Change. This command will allow global changes. To use,
first input the pattern to be changed and press <ENTER>. Now input
the new pattern beside the 'TO:' prompt. The text will be searched
from the current position until the pattern is found. It will then be
changed and the cursor will be set to the start of the line changed.

Change Again. This command (Again) will repeat the last change
<C> command input. If you have a number of changes to make, just
hold the key down. A combination of Find/Next and Change/Again
make a prompted replace.

3-2

Line_ Editor

2.3 Block Commands:

<D>

Begin Block. This inserts a 'begin block’ marker at the current line
position. Only one of these markers are allowed at one time.

End Block. This inserts an 'end block’ marker at the current line
position. Only one of these markers are allowed at one time.

Move Text. This will move the text marked with a 'begin' and ‘end’
marker to the current cursor position. This command will not work
if both markers are not present or if an attempt 1s made to copy the
block onto itself. When this command is used, you will notice some
garbage on the screen -- this is normal. If an attempt is made to
move more than 6000 bytes, an error message will be shown and the
command will be aborted. The block markers will not be deleted
when this command is used.

Replicate. This command will replicate the text marked with a
'begin’ and 'end’ marker to the current cursor position. This
command will will not work if both markers are not present or if the

'start’ marker occurs after the 'end’ marker or if an attempt is made
to copy the block onto itself. The block markers will not be deleted
when this command is used.

Delete. This command will delete the text marked with a 'begin’

and 'end' marker to the current cursor position. This command will
will not work if both markers are not present or if the 'start’ marker
occurs after the 'end’ marker or if attempt is made to copy the block
onto itself. When this command 1s called, the cursor will first be
moved to the start of the block and the size of the block will be shown
at the top of the screen. To delete the block you must press the <Y>
key. Pressing any other key will abort the delete operation. This
command will also delete the block markers.

Kill Markers. This command will delete any block markers present
in the text (there's no reason for the selection of 'Z' for this -- you'll
just have to remember it).

2.4 Miscellaneous commands:

<S>

Split. This is used to split a line into two. Position the cursor to the

spot where you want an end-of-line marker placed and press
<ENTER>.

Help. In case you misplaced the manual, this command will give a
summary of the commands. Press any key to show the next page and
then to return back to the editor.

3-3

Line Editor

<Q> Quit. This will quit the editor and return you to the I/O menu
selections. If you read a file when you first started, the first option
will be to Save the file with the last filename. The next two options
will let you either append a file or write the current buffer out with a
new filename. After the file is saved, you will return to CoCo-C's
command coordinator.

3. Text Editing Conventions:

Whenever text is being entered -- whether it's for inserting or editing a line or
entering a search pattern -- you will be in special input mode. Some keys have
been redefined from the normal BASIC arrangement.

<Left arrow> moves the cursor left.

<Right arrow> moves the cursor right.

<Up arrow> produces the 'A' character (ASCII caret).
<Down arrow> produces the ' character. =~ .
<Shift left arrow> deletes the character at the cursor.
<Shift right arrow> inserts a space at the cursor.
<Shift up arrow> produces the '{' character.

<Shift down arrow> produces the [character.

<Shift @> produces the '\' character.
<Clear> produces the '}’ character.

<Shift clear> produces the '{' character.

Whenever you are typing, you are in overstrike mode. This means that the
character at the cursor will be changed to the key you press.

The <Shift 0> combination still turns the lower case on and off. If lower case is
on, the cursor will flash slowly, when it's off the cursor flashes quickly.

4. Long Lines:

This editor is designed for a special purpose. In order to make i1t as fast and easy
to use, certain trade offs have been made -- the most obvious will be the line
length. It is not possible to input a line which extends past the right side of the
screen. This means that when you are inputting lines, they can only be 51
characters long. This should be more than ample for most purposes -- any lines
longer than this wiil be truncated in the program listing anyway.

It is possible to end up with lines longer than 51 characters -- you could use the
Glue or Change command, or perhaps you are reading a file created by a different
editor. In this case, only the first 51 characters will be shown. If you never edit
the line, it will be saved in its long version when the text is saved. If you attempt
to edit the line, you will only be allowed to edit the first 51 characters. After the
line is edited an end-of-line marker will be placed in the 51th position and the line

3-4

Line Editor

will be split. This means that no characters will be lost. You'll be made aware of
the split by the screen refresh which occurs.

0. File Formats:

All I/O is done in standard ASCII format. If you have an existing file which
contains control characters (less than ASCII 32) or graphics characters (greater

than ASCII 127), then the file should first be filtered. Use the following BASIC
program;:

10 OPEN "I",1,"OLDFILE.DAT"
20 OPEN "O",2, "NEWFILE.TXT"
30 IF EOF(l) THEN 100

40 LINE INPUT #1,a%

50 PRINT #2,AS8

60 GOTO 30

100 CLOSE:END

6. Wildcards:

On all searches, changes and jumps, a wildcard character i1s available. This is
the '\', generated with the <Shift @> key.

Since all trailing spaces are truncated by the input routines, there has to be a way
to enter search and change data with trailing blanks -- if you end a string input
for FIND or CHANGE with the '\' the '\' will be changed to an end-of-line. For
example, lets say you wish to change all occurrences of '\\' (two spaces) to '\' (one
space). At the FROM: prompt, enter '\\\'. At the TO: prompt, enter '\\'.

7. I/0O Conventions:

When a disk system 1s connected, the default filename extension will be "TXT".
Whenever you are inputting a filename, you may type the word "DIR' for a
directory of drive {8, Adding a drive number with a colon (ie. DIR:2) will give a
directory of the specified drive. This does mean that you are not allowed a file
called 'DIR.TXT".

After a directory, just enter the filename you wish to read or write.

You will notice that the I/O portion of the program is in BASIC. This permits
some modification on your part as well as ensuring compatibility with other
ROMs. This program works with both cassette and disk. It works with standard
Radic Shack DOSes 1.0 and 1.1 as well as JDOS and ADOS and EDOS. It should
work with any other DOSes which are compatible with BASIC.

3-9

Line Editor

If you wish to return to the editor, press any other key, except <BREAK> -- this
will return you to BASIC.

8. Errors:

Since the files are opened from BASIC, some errors of the 10 and NE type may
occur, If the do just type GOTO 9 <ENTER> to return to the command mode.

3-6

CoCo-C Compiler

1. Compiler Specifications:

CoCo-C is a single pass optimizing compiler which compiles a subset of the C
language as defined by Kernighan and Ritchie. The output it creates 1s a 6809
assembly language file designed to be assembled with the CoCo-ASM 6809
Assembler. The resulting output from the assembler i1s a binary file which then
may be linked with the CoCo-C Library Linker. The Linker merges in the CoCo-C

Function Library with the compiled program to create a stand-alone ML
program.,

CoCo-C supports the following:

1.1 Symbolic Names:

Symbolic names may consist of letters and digits and the underscore
character ('_'). The first character in the symbol name must be a letter or
' . The symbol name may be any length, but only the first eight
characters are used. All lower-case letters are converted to upper-case as

output to the assembler.
1.2 Constants:

The following constants are recognized by the compiler:

type: value: example:

decimal number (0 -65535) 123

hexadecimal number (0x0 - OxfID) Oxle7f

quoted string (string address) "sample string”
character constant (1 or 2 chars) "a' or 'Z' or 'ab’

In addition to the above, the compiler recognizes the following "special”
character constants:

type: value: example:
newline character 0x0a \n

tab character 0x09 \ t
backspace character 0x08 \b
formfeed character 0x0c \ £

octal value (0-777) \123

1.3 Data Type Declarations (variables):
The compiler supports two types of variables: integers and characters.

Integers occupy a word in memory and characters, a byte. Both integers
and characters are of the signed type.

4-1

CoCo-C Compiler

examples:
char c¢; /* 8 bit character, signed */
int 1i; /* 16 bit integer, signed */

1.3.1 Global variables:

Variables declared outside a function are defined to be global or "static”
because memory is permanently reserved for them. All global variables
reside in the lower 32K of memory and each must have a unique
symbolic name. Also, global variables must be initialized during the
run-time of the executed C code.

1.3.2 Local variables:

Variables declared inside a function are defined to be local or
"automatic’, because they exist only during the execution of a function
in which they are declared. When control leaves the function, they
disappear. Local variables reside in the stack frame area of memory.
The amount of local variable space is only limited to the size of available
stack. Symbolic names for local variables need not be unique for each
function. As with global variables, local variables must be initialized
during run-time.

1.4 Arrays:
Single dimension (vector) arrays are supported and can be of type "char”
or "int".
examples:
char c¢c[n]; /* character array */
int in]; /* integer array */

1.5 Pointers:

Local and static pointers can contain the address of "char” or "int" data

elements.

examples:
char *c; /* pointer to character */
int *i; /* pointer to integer */

4-2

CoCo-C Compiler

1.6 Initializers:
Initializers are accepted for global declarations only. They consist of
constants declaring arrays, strings or pointers. Initializers may be of type
- int or char. Initializers have the form:

type name = {init_list};

examples:

— int ia[3] = (1,2, 3}; /* 3 element integer array *x /
/* containing 1, 2, 3 */

int iaf{3] = 1; /* 3 element integer array * /

/* containing 1, 0, 0 */

char ca[] = {'a',60}; /* 2 element character array */

- /* containing ASCII 'a' & 0 */
char ca[4] = "abc¢"; /* 4 element character array */

- /* containing ASCII abc & O */
char ca[] = "abe"; /* 4 element character array */

N /* containing ASCII abc & 0 */
char *cp = "name"; /* character ptr containing */

/* address of "name™" */

1.7 Expressions:

CoCo-C supports the following expression operators:

_ 1.7.1 unary operators: examples:
- minus -1
g indirection *i
& address of &name
++ increment, either prefix or postfix ++i or i++
-- decrement, either prefix of postfix -—i Oor i-—-

1.7.2 logical operators:

! logical 'not’ 'a
&& logical 'and’ a && b
|] logical ‘or’ a || b

4-3

CoCo-C Compiler

1.7.3 binary operators: examples:
~ one's complement ~a
+ addition a + b
- subtraction a - b
* multiplication a * b
/ division a /b
% modulo, i.e. remainder from division a % b
! inclusive ‘or’ a | b
de exclusive 'or' a ~ b
& logical 'and’ a &b
= test for equal a == b
= test for not equal a '= b
< test for less than a <b
<= test for less than or equal to a <= b
> test for greater than a > b
>= test for greafer than or equal to a > b
<< arithmetic left shift a << b
>> arithmetic right shift a > b
1.7.4 assignment operators:
| = logical 'or' and assign a {= b
s exclusive 'or' and assign a *“= b
&= logical 'and’ and assign a &= b
4= add and assign a += b
-z subtract and assign a -= b
= multiply and assign a *= b
= divide and assign a /= b
Yo = modulo and assign a %= b
<<= shift left and assign a <<= b
>>= shift right and assign a >= b
1.7.5 miscellaneous operators:
/* */ comment delimiter /* I'm a comment */
" character string delimiter "Helle Everybody"”
b character constant delimiter ‘A’
; end of a statement a = 5;
{ } statement block delimiter {a = 5; b = 6;}
() indicates function calls and funcl {)
sets priority in expressions a = (3 - a) * b
[] indexes arrays a[5}
- label delimiter, CASE terminator, case 1:
and conditional separator.
? conditional expression c =a<b??a:b

4-4

CoCo-C Compiler

1.8 Functions:

Functions in CoCo-C are basically subroutines, containing optional
arguments as input, which returns an integer value as output upon its
exit. The value returned may be used in the subsequent evaluation of an
expression. Furthermore, a function not requiring a returned value, may
just simply "return”.

CoCo-C functions have the form;

name (argument list, if any)
argument declaration, if any
{

}

When a function is called, arguments are allocated on the stack in right to
left order. While in function, local variables are also allocated on the stack.
The declared arguments and variables become de-allocated when control
leaves the function block.

object-declarations and statements, if any

function examples:

dummy () { } /* smallest function, does nothing */

getstat () /* function returning int value */

{ /* (assume stat 1is global var} */
int a; /* int a 'is a local variable */

a = stat & Ox7f;
return(a);

}

area(w, 1, h) /* function w/3 args returning int */
int w, 1, h; /* w, 1 & h are function arguments */
{

return (w*lxh) ;

}

function call examples:

init_var():; /* call w/no args or return value */
x = getstat(); /* call with return int in x */
i = area(7, x, v):; /* call w/3 args & return int in 1 */

4-5

CoCo-C Compiler

1.9 Program Control:

CoCo-C supports the following control statements:

1.9.1 If - else statement
syntax:

if (expression)
statement-1;

else
statement-2;

1.9.2 Else - if statement
syntax:

if (expression)
statement

else if (expression)
statement

else if (expression)
statement

else
statement

1.9.3 Switch statement

syntax.

switch (expression) |

case const-expr:
statements

case const-expr:
statements

default:
statements

4-6

example:

if (n > 0)

{

if (a > b)

zZ = a;

}

else
Z = b;

example:

if (n == 1)

Z = a;
else if (n
z = b;
else if (n
Z = C;

alse
z = 0;

example:

switch (ch)
case 'Y':
case 'y':
cptr =
break;
case 'N':
case 'n':
cptr =
break;
default:
cptr =

== 2)

== 3)

!lyes“ ;

1} no n ;

it error " .

CoCo-C Compiler

1.9.4 While statement
syntax:
while (expression)
statement;
1.9.5 Do - while statement
syntax:

do statement
while (expression);

1.9.6 For statement
syniax:

for (exprl ; expr2 ; expr3)
statement;

1.9.7 Break statement

syntax.

break;

1.9.8 Continue statement
syntax:

continue;

4-7

example:
while ((c=getch()) '= '\n')
putch(c};
example:
do {
¢ = getch();
putch(c):;
}
while{(c !'= '\n’);
example:
for (n = 0; n < k; n++)
{
a[ln] = 0;
}
example:
for (n = 0; n < 10; n++)
{
if (n == 5)
break;
a[ln] = 0;
}
example:
for (n = 0; n < 10; n++)
{
if (n 1= B5)
continue;
a[n] = 0;
}

CoCo-C Compiler

1.9.9 Goto statement

syntax:
goto label;

label: statement

1.9.10 Return statement
syntax:

return expression-list;

1.9.11 Semicolon statement

syntax:

4-8

example:

for (j = 0; 3 < 10; j++)

{
for (k = 0; k < c; k++)
{
if (k > c¢)
goto report_ err;
count++;
}
}
report err:
printf ("Error Found\n");
exit ()
example:

if (error)
return (-1);

example:

/* infinite loop */
for (;:)

CoCo-C Compiler

1.10 Preprocessor Commands:

CoCo-C has a built in preprocessor which allows simple macro
substitutions, conditional compilation, and inclusion of text from other
files. The following preprocessor commands are supported:

1.10.1 #define <name> <string>

Preprocessor will replace name by string throughout text.

1.10.2 #include <filename>

Allows program to include other files within its compilation. Optional
quotes (" ") surround filename.

note: #includes may not be nested

1.10.3 #ifdef <name>

Allows the following lines (up to #else or #endif) to be processed,
providing that name 1s defined.

1.10.4 #ifndef <name>

Allows the following lines (up to #else or #endif) to be processed,
providing that name is NOT defined.

note: #ifdef's and #ifndefs may be nested

1.10.5 #else

Allows the following lines (up to #endif) to be processed, providing that
the preceding #ifdef or #ifndef was false.

1.10.6 #endif

Terminates #ifdef and #ifndef.
1.10.7 #asm (not supported by standard C)

Allows all code to be passed unchanged directly to the target assembler,
enabling "in-line" assembly language within the C program.

4-9

c

0Co-C Compiler

1.11 Miscellaneous:

Constants are evaluated by the compiler. As example, the line of code:
X = 1+2;

would be evaluated as:
X = 3;

by the compiler.

During the evaluation of an expression, any undeclared name 1s assumed
to be a function.

Function calls are defined as any primary followed by an open parenthesis,
so legal forms include:

variable();
arraylexpression]();
constant();
function()();

Pointer arithmetic takes into account the data type of the destination (ie.
pointer++ will increment by two if pointer was declared "int *pointer”).

Pointer compares generate unsigned compares (since addresses are not
signed numbers).

By default, the compiler generates relocatable code. Code, literals and
global variables are in one contiguous section of memory.

Generated code can be selected as absolute (i.e. the code may be placed in
Read Only Memory). Code, literals, and variables are kept in separate
sections of memory,

The generated code is re-entrant. Every time a function is called, its local
variables refer to a new stack frame. By way of example, the compiler uses
recursive-descent for most of its parsing, which relies heavily on re-entrant
(recursive) functions.

4-10

CoCo-C Compiler

2. Assembly Language Interface:

The CoCo-C Compiler allows the possibility of mixing assembly language with
your C program. This gives total flexibility within the user program, allowing
you to custom tailor sections of code requiring maximum speed or efficiency.
Advanced users may want to create a custom interrupt service routine, which
normally would be impossible without assembly language.

Interfacing to assembly language is relatively straight forward. The "#asm ...
#endasm"” construct allows the user to place assembly language code directly into
the control context. Since it is considered by the compiler to be a single statement,
it may appear in such forms as:

while (1) #asm ... #endasm

or

if (expression) #asm

#endasm

else statement;
Note a semicolon is not required after the #endasm since the end of context is
obvious to the compiler., Assembly language code within the "#asm... #endasm"

context has access to all global symbols and functions by name. It is up to the

programmer to know the data type of the symbol (whether "char" or "int" implies
a byte access or a word access).

 Local variables and arguments are passed from C to assembler by placing them

onto the 6809's machine stack. The compiler places the arguments in right to left
order before a branch to subroutine is made.

As an example the function:
setclock{(h, m, s);
would set up variable 's' as the first argument and variable 'h' as the third

argument. To retrieve the arguments you must index into the stack to get the
desired vartable:

#asm

?SETCLOCK

LDD 2,8 * get first argument (s}, A = hi byte, B = lo byte
LDX 4,8 * get second argument (m}

LDU 6,8 * get third argument {(h}

RTS
$endasm

4-11

CoCo-C Compiler

To pass variables from assembler to C, simply return the value in register pair A,B:

¢ = inchar(); /* get byte from CoCo Keyboard */

$asm
?INCHAR

JSR [$SAQ00] * check keyboard for character
BEQ ?INCHAR * keep trying until available
TFR A,B * move char to B

CLRA * clear out hi byte

RTS
$endasm

It is also important to note that a "?" must precede the subroutine name that is
being called from a C function. This is because the compiler automatically
appends a "?" to all defined functions .

Since everything between #asm to #endasm is passed straight through to the
assembler, 1t is also possible to control the assembler's directives. within C. As an
example, you could insert the name of the C file into the .LST output file from the
assembler by doing the following:

$asm
NAME TEST.C
¥endasm

This would pass to the assembler as a directive, and the assembler would place
the name "TEST.C" at the top of each page in the listing.

4-12

CoCo-C Compiier

3. Stack Frame:

CoCo-C uses the 6809's machine's stack to pass function arguments and also to
allocate space for local variables. This "stack frame” resides in CoCo's lower 32K
of RAM and grows downward as variables use its space. Function arguments are
pushed onto the stack as they are encountered between parentheses. During the
function call, the sender’'s return address is also pushed on the stack.

Local variables allocate as much stack space as is needed, and are then assigned
the current value of the stack pointer (after the allocation) as their address.

int x;
will produce
LEAS -2,8

which merely allocates room on the stack for 2 bytes (not initialized to any value).

References to the local variable 'x' will now be made to the stack pointer + 0. If
another declaration is made:

char array([3]:
the code would be
LEAS -3,8S

Array [0] would be at SP + 0, array [1] would be at SP + 1, array [2] would be at 5P
+ 2, and 'xX' would now be at SP + 3.

Thus, assembly language code using "#asm...#endasm"”" cannot access local
variables by name, but must know how many intervening bytes have been
allocated between the declaration of the variable and its use.

It 1s worth pointing out local declarations allocate only as much stack space as is
required, including an odd number of bytes, whereas function arguments always
consist of two bytes each. In the event the argument was type "char” (8 bits), the
most significant byte of the 2-byte value is a sign-extension of the lower byte.

4-13

CoCo-C Compiler

4, Function Library:

CoCo-C uses a relocatable function library for all its utility, I/O, and RSDOS
functions. This library is in a separate binary file called "CLIB.BIN", This
library 1s intended to get linked in with the compiled C program. In order for the
C program to access any library function, the function name along with its
relative entry point must be included in the C file. The file that contains the run-
time library entry table 1s called "CLIB.INC". By default, this file is automatically
"Included” at the end of the .ASM output during the compilation of a C file.

CoCo-C has a special function within its library called "bascmd”. This function
allows you to mix BASIC commands within your C program. Many of the
commands for the CoCo 1, 2 and 3 are supported!

For a detailed description of all the library functions contained within CoCo-C,

refer to the section: CoCo-C Librarv Functions.

5. Start-Up/Initialization (CSTART. C):

Initialization must take place before for program enters main(). This is done by
including "CSTART.C" at the beginning of your C file,

CSTART.C is a user configurable C and assembly language file that contains (at
minimum) the beginning address for code, the beginning address for data, and
the top address of the stack frame. Also, CSTART.C contains subroutine calls to
initialize the interface between RSDOS and BASIC as well as setting up error
trapping parameters. Conditional #defines are used within the start-up file to
enable special user options during the compile. As example, it is not necessary to
modify CSTART.C to enable error trapping; a simple #define ERRTRAP is all that
1S necessary.

CSTART.C also contains CoCo-C’s relocatable run-time library. Unlike the
function library, the run-time library contains the low-level logical and math
routines necessary for the generated output code. The run-time library is in
ASCII hex and the compiler's generated code makes calls to these routines by
address. Therefore, the run-time code should NOT be modified for any reason.

e

CoCo-C Compiler

6. Register Usage:

The Compiler uses the following registers in the 6809:;

secondary register
- temporary register

U - argument count |

B - primary register (lo byte)
A - primary register (hi byte)
X

Y

These registers may be "borrowed” by a user's assembly language application, but
they must be restored to their original values before re-entering C. This is a must
for any interrupt service routines.

7. Special Functions:

There are several special functions within CoCo-C which do not contain a fixed
number of arguments. They ones that apply are:

printf(), forintf(), sprintf), scanfl), fscanf{), and sscanfl().

These functions rely on the compiler to count the number of arguments before
control is passed to that function. Each time such function is called, the number
of arguments is loaded in register 'U' and then sent to that function where it can
be evaluated.

The function names listed above are reserved by the compiler and should not be
re-defined.

8. Special Defines:

CoCo-C contains several special defines which are used as compiler option
selectors. These defines direct the compiler to either conditionally compile certain
sections of the start-up code and/or change its default generated output. The
defines that apply are:

$define ABSOLUTE /* create absoclute code for ROM-PAK */
#$define ERRTRAP /* enable RSDOS error trapping */
$§define NOCLIB /* do not use function library */

Due to the nature of these defines, it is necessary to declare these at the very
beginning of your C file (before the #includes).

CoCo-C Compiler

9. Using the Compiler:

The compiler is first invoked by running CoCo-C's command coordinator. Type
RUN "CC <ENTER>. After the main menu appears, select C (for compile). The
compiler will automatically load and execute, and request the following:

Opticns ?
One or more compiler options may be selected at this time. Each option contains

one character. Spaces or commas may be used as delimiters. After selecting the
desired option(s) hit <ENTER>. If no options are needed, just hit <ENTER>.

Compiler Options:

Include Source in Output
Monitor Source on Screen
Alarm on Error
Pause on Error

v B~
ion oo

Entering a ? <ENTER> will display the options if you forget what they are.
Next the compiler will ask you for the putput file:

OQutput File 7?

Enter any valid file name as your assembly language output file. Examples:

TEST.ASM create output file "TEST.ASM” on default drive
MYFILE.ASM:2 create output file "MYFILE ASM" on drive 2

If a drive designator is not specified, the output file will be created on the default
drive. If no output file is required, just hit <ENTER>. This will cause the output
to default to the screen.

Next the compiler will ask you for the input file:

Input File ?

Enter the name of your C source file. Examples:

TEST.C read tnput file "TEST.C" from default drive
MYFILE.C:2 read input file "MYFILE.C"” from drive 2

After the <ENTER> key is pressed, the compiler will begin compiling your code.
Any errors will be displayed on the screen. The compiler will pause on error if
the P option was selected. Hitting <ENTER> resumes the compile, while the
<BREAK> key terminates the compile.

4-16

N -

CoCo-C Compiler

After the compilation of your C file, the compiler will request you for another
input file. This feature gives you an additional way to include other source files.
If no other source files are to be included, just hit <ENTER>.

When the compile has compieted, and assuming there were no errors in your C
program, the compiler will respond with:

No Errors Found
Hit any Key to Return to Menu

At this time, hitting any key will return you to CoCo-C's command coordinator.

The next step would be to assemble the ASM file the compiler created. This is
explained in the CoCo-ASM section of this manual.

Note: Hitting the <BREAK> key at any time while the compiler is running will
terminate the compile and return you to the command coordinator.

10. Error Trapping:

Many functions within Co-Co-C's library (CLIB.BIN) support disk I/O (ie. fopen(),
fpute(), fgete(), kill(), ete. If an error occurs during the call of such functien, the
program will exit and return to BASIC with an error message (ie. NE ERROR for

file not found). The same is true for any error during a bascmd() function call.
Like BASIC, this is the default standard for CoCo-C.

As an option, the compiler provides a method of "trapping” errors so program
confrol does not go to BASIC during an error. By defining the following:

#$define ERRTRAP

at the beginning of your C program (before the #includes), will instruct the
compiler to enable error trapping within your program. Since most of the disk
I/O functions return their own error codes, your program can now decipher
whether or not an error has occured.

It is advisable to use error trapping only on fully debugged programs, failure to do
so may cause unpredictable results.

CoCo-C Compiler

11. Creating ROM-able Code:

With CoCo-C it 1s possible to create programs suitable for EPROMs. Not only is
this useful for applications using the CoCo's ROM-PAK, but also for embedded
applications using a stand-alone 6809 single board computer.

By default, CoCo-C produces complete position independent (relocatable) code.
This means that the code, literals, and global variables are all "inline" within one
contiguous section of memory. This enables your program to load and execute in
any allowable space within the lower 32K of memory. Programs for EPROMS, on
the other hand, have different requirements. Since a program for a ROM ends up
in Read Only Memory, the code and variable areas must be placed in separate
locations or segments. By defining the following:

$define ABSOLUTE

at the beginning of your C program (before the #includes), will instruct the
compiler to produce absolute code rather than relocatable code. Separate origins
will be created for both the code and the variables. During the compile, the code
will be placed in the code segment and all global variables will be placed in the
data segment. After assembling and linking, the resulting code could then be
programmed into an EPROM for whatever application.

The file CSTART.C contains the starting locations for both the code and data
segments. This file may be modified to suit your application. The label "CSEG"
declares the code segment and the label "DSEG" declares the data segment. As
example, for the CoCo ROM-PAK you may want to change the file to this:

CSEG EQU §C000 * ROM—-PAK address
DSEG EQU S$1000 * variables begin

Your compiled program would then have an absolute starting address at $C000,
and the variables would begin at location $1000. The resulting bmary file could
not be relocated.

For testing purposes, you may want to "CSEG" your program at a location within
the lower 32K of memory. Once your program is fully debugged, all you have to do
is change CSEG to the starting address of the EPROM and re-compile your
program,

4-18

C - mpiler

12. Error Messages:

When CoCo-C detects an error, it displays as output the line that caused the
error. An arrow consisting the character "#" is displayed beneath the line,
containing a descriptive error message. If the P option was selected at the time of
compile, the program will pause and resume upon entry of the <RETURN> key.

CoCo-C produces the following error messages:

12.1 bad label

A goto statement has an improperly formed label. Either it does not conform to
the C naming conventions, or its missing altogether.

12.2 can't subscript

A subscript is associated with something which is neither a pointer nor an
array. '

12.3 cannot assign to pointer

An inifializer consisting of a constant or a constant expression is associated
with a pointer. Integer pointers do not take initializers, and character
pointers take only expression-list or string-constant initializers.

124 global symbol table overflow

The global-symbol table has overflowed due to exceeding the number of global
symbols allowable by the compiler.,

12,5 1illegal address

The address operator is applied to something which is neither a vanable, a
pointer (subscripted or unsubscripted), nor a subscripted array name.

126 1illegal argument name

A name in the format argument list of a function declarator does not conform
to the C naming conventions.

127 1illegal function or declaration

After preprocessing a line, the compiler found something at the global level
which is not a function or object declaration.

4-19

CoCo-C Compiler

12.8 illegal symbol

The compiler found a symbol which does not conform to the C naming
convention.

129 1nvalid expression

An expression contains a primary which is neither a constant, a string
constant, nor a valid C name.

12.10 line too long

A source line after preprocessing is more than 128 characters long. This can
be corrected by breaking the line into two or more parts.

12.11 literal queue overflow
A string constant has overflowed the compiler's literal queue. The literal
queue i8 a buffer where the compiler stashes away string constants until the
end of a function is reached.
12,12 local symbol table overflow
The local-symbol table has overflowed due to exceeding the number of local
symbols allowable by the compiler. This error may be caused by a single
function, since that the local symbol table is cleared after use of each function.
12,13 macro name table full
Too many #define commands has overflowed the macro name table.

12.14 macro string queue full

A #define command has overflowed the macro string queue. The macro
string queue is a buffer for the replacement strings associated with macro
names.

12.15 missing token

The syntax requires a particular token which 1s imssing.
12.16 multiple defaults

A switch contains more than one default prefix.
12.17 must assign to char pointer or array

A string-constant initializer is applied to something other than a character
pointer or character array.

4 - 20

CoCo-C Compiler

12.18 must be constant expression

Something other than a constant expression was found where the syntax
requires a constant expression.

12.19 must be lvalue
Something other than an lvalue is used as a receiving field in an expression.
Attempting to assign a value to a constant or an unsubscripted array name
will cause this error.
12.20 must declare first in block
A local declaration occurs after the first statement 1n a block.
12.21 negative size illegal
An array is dimensioned to a negative value.
12.22 no apostrophe
A character constant lacks its terminating apostrophe.
12.23 no closing bracket
The end of the input was reached at a point within the body of a function.
1224 no comma
An argument list or declaration list lacks a separating comma.
12.25 no final }
The end of the input occured while inside of a compound statement.

12.26 no matching #hf . . .

A #else or #endif is not preceded by a corresponding #ifdef or #ifndef
command.

12.27 no open paren

An apparent function declarator lacks the left parenthesis which introduces
the format argument list.

4-21

CoCo-C Compiler

12.28 no quote
A string constant lacks its terminating double quote. Note that string
constants cannot be continued from one line to the next, so the terminating
quotation mark must be on the same line as the initial quotation mark.

12.29 no semicolon
A semicolon does not appear where the syntax requires one.

12.30 not a label
The name following the keyword goto is defined, but not as a label.

12.31 not allowed with block-locals

A goto statement occurs within a function which has local declarations at a
level lower than the function header. CoCo-C does not handle this situation.

12.32 not allowed with goto

A local declaration occurs at a level below the body of a function which
contains goto statements. CoCo-C does not handle this situation.

12.33 not allowed in switch

A local declaration occurs within the body of a switch statement. CoCo-C does
not allow this.

12,34 not an argument

The names in the formal-argument list of a function header do not match the
corresponding type declarations.

12.35 not in switch

A case or default prefix occurs outside of a switch statement.
12.36 open error on filename

The output file or an input file cannot be opened.
1237 open failure on include file

A file named in a #include command cannot be opened.

4 - 22

CoCo-C Compiier

12.38 out of context

A break statement is not located within a do, for, while, or switch statement, or
a continue is not within a do, for, or while statement.

12.39 output error

An error occured while writing to the output file. This would indicate an I/O
error, a write-protected disk, or insufficient space on the disk.

1240 staging buffer overflow

The code generated by an expression exceeds the size of the staging buffer. The
staging buffer temporarily holds all of the code generated by an expression.
This situation can be corrected by breaking the expression into several
intermediate expressions.

1241 too many active loops

The level of nesting of any combination of do, for, while, and switch statements
exceeds the capacity of the while queue to track loop-back and terminal labels.

12.42 too many cases

The number of case prefixes in a switch exceeds the capacity of the switch
table.

1243 wrong number of arguments

One or more of the formal arguments in a function header was not typed in
before entering the body of a function.

4-23

CoCo-C Library Functions

abs

Format;
abs (nbr) int nbr;
Description:

The abs function returns the absolute value of 'nbr’. If ‘'nbr' is a positive value,
it is returned unchanged. If negative, the negated value is returned.

Returns:
The absolute value of 'nbr'.
Examples:

offset = abs(voltagel - voltage2);

111
Format:
atoi (str) char *str;

Description:

The atoi function converts the decimal number represented by the string at
'str' to an 1nteger and returns its value. Leading white space is skipped, and
an optional sign (+ or -) may precede the leftmost digit. The first nonnumeric
character terminates the conversion,

Returns:
Integer equivalent of 'str'.

Examples:

number = atoi{("1234");

o-1

CoCo-C Library Functions

atoib

Format:
atoib (str, base) char *str; int base:
Description:
The atoib function converts the unsigned integer of base 'base’ represented by
the string at 'str' to an integer and returns its value. Leading white space is
skipped. The first nonnumeric character terminates the conversion.
Returns:

Integer equivalent of 'str' within 'base'.

Examples:

number = atoib("17FF",16);

bascmd

Format:

#include "BASIC.H"
bascmd (emd, str) int emd; char *str;

Description:

The bascmd function allows a selected set of BASIC commands to be sent to the
CoCo's BASIC interpreter. This includes control, I/0, disk, and graphics
commands. The compiler and function library "pre-tokenizes" the command
before sending it to BASIC. This virtually operates the same way when a
command 1s entered at the BASIC command prompt (ie. DIR).

The bascmd function a¢lways requires two arguments; the command ‘cmd’
and the parameter string pointed to by 'str’. If no parameters are required, a
NULL parameter must be used. The file "BASIC.H" contains the selected list

of commands and the parameter string is whatever is necessary to follow the
command (ie. AUDIO, "ON").

Special consideration must be taken when using graphic commands. Since
CoCo graphics require reserved memory at specific locations, memory and/or
stack conflicts can arise if the C startup file (CSTART.C) and your C program
are not set up properly. Also the proper PCLEAR command may be required
before loading your program (ie. PCLEAR 8).

o-2

CoCo-C Library Functions

bascmd
The following is the list of BASIC commands acceptable by bascmd:
All CoCo's: CoCo 3 Only:
RUN SCREEN WIDTH
SET COLOR PALETTE
RESET CIRCLE HSCREEN
CLS PAINT HCLS
MOTOR DRAW HCOLOR
SOUND PCOPY HPAINT
AUDIO PMODE HCIRCLE
EXEC PLAY HLINE
LINE DIR HPRINT
PCLS DRIVE HSET
PSE VERIFY HRESET
PRESET HDRAW
ATTR
HPOINT

Since nested quotes are not allowed in CoCo-C, a parameter string that
requires quotes may substitute the ASCII octal equivalent (\042).

Octal substitutions are also required for any special BASIC tokens that may be

needed 1n the parameter string. Use the following substitutions for these
tokens:

BASIC token: Octal Substitute:
+ \253
= \254
* \255
/ \256
TO \245
PSET \275
PRESET \276

Returns:
ERR if BASIC error.

Examples:

bascmd (RUN, "GAME") ;
bascmd (CLS, "2");
bascmd (WIDTH, "32"};

bascmd (PCOPY, "4 \245 37); /* PCOPY 4 TQ 3 */
bascmd (LINE, "\254(191,0),\275"); /* LINE -(191,0), PSET */
bascmd (DRAW, "\042BM128,96;U25;R25;D25;L25\042");

0-3

CoCo-C Library Functions

Is

Format:
cls () ;
Description:

The cls function clears the CoCo's text screen. This function operates the same as
BASIC's CLS command. No parameters are passed to this function.

Returns:
Nothing
Examples:

cls ()

amp

Format:
cmp ();

Description:

The cmp function puts the CoCo 3 in composite video mode. This function
operates the same as BASIC's CMP command.

Note:; CoCo 3 ONLY.
See also rgb.

Returns:
Nothing
Examples:

cmp () ; /* put CoCo 3 in composite mode */

5-4

CoCo-C Library Functions

¢coc02 0O __

Format:

coco2 ();
Description:
The coco2 function puts the CoCo 3 in a pseudo CoCo 2 mode (a CoCo 3 can never
exactly emulate a CoCo02). All CoCo 3 BASIC commands are disabled. This
function should only be called when the CoCo is in 32 column mode.

Note: CoCo 3 ONLY.

Returns:
Nothing

Examples:
bascmd (WIDTH, '"32"); /* put CoCo 3 in 32 column */
coco2(); / * and in CoCo 2 mode */

¢y OO

Format:
coco3 ();
Description:

The coco3 function puts the CoCo 3 back in CoCo 3 mode. This function should not
be called if the Super Extended BASIC memory has been overwritten.

Note: CoCo 3 ONLY.
Returns:

Nothing
Examples:

coco3({); /* Ensure CoCo 3 mcde */

5-5

CoCo-C Library Functions

Cursor

Format:
cursor (pos) int pos;
Description:

The cursor function positions the CoCo's text screen cursor by the value of

'‘pos. The CoCo must be in 32 column mode and 'pos’ must be in the range
from 0 - 511.

Returns:

ERR if CoCo is not in 32 column mode or if 'pos' is out of range.

Examples:
cursorxr (72); /* set cursor on 2nd line, 8th char */
cursor (32*4+15); /* set cursor on 4th line, 15th char */

dtoi |

Format:
dtoi (str, nbr) char *str; int *nbr;

Description:
The dtoi function converts the signed decimal number in the character string
at 'str' to an integer at 'nbr' and returns the length of the numeric field found.
Conversion stops at the end of the string or upon any illegal numeric
character. With 16-bit integers, dtoi will use a leading sign and at most five
digits.

Returns:

Field length of nbr'.

ERR on error.
Examples:

length = dtoi("5678",&n);

9-6

CoCo-C Library Functions

exit

Format:
exit ();

Description:

The exit function provides a way to terminate a program., This function may
be placed anywhere within the program. When the function is called,
program control returns to BASIC.

Returns:

Does not return.

Exampies:

if((c=getchar()) == BREAK) /* get next character */
exit () /* and exit if BREAK key */

fast

Format:
fast ();
Description:

The fast function puts the CoCo 3 in high speed mode. This function has the
same effect as POKE &HFFD9, 0 in BASIC.,

Note:

CoCo 3 ONLY; See also slow.
Returns:

Nothing
Examples:

fast () /* switch to hi-speed mode */

5-7

CoCo-C Library Functions

fclose - —

Format:

#include "STDIO.H"
fclose (fd) int fd;

Description:

The fclose function closes the file associated with the file descriptor fd'. Any
data in the buffer of an output file is written to before the file 1s closed.

Returns:
ERR if unsuccessful.
Examples:

fclose(£fd) ; /* close file fad */

fclogat OO OO

Format:

#include "STDIO.H"
fclosall ();

Description:

The fclosall function closes all open files. All open file buffers are written to
their associated files before closing.

Returns:
ERR if unsuccessful.

Note:

All open files are automatically closed when a program terminates normally.

Examples:

fclosall(); /* close all open files */

o-8

CoCo-C Library Functions

fgete

Format:

#include "STDIO H"
feete (fd);

Description:

The fgetc function reads the next character from the file associated with file
descriptor 'fd'. The character returned is a positive integer in the range of 0 to
255. A returned value of EOF indicates that either the end-of-file has been
reached or that an error has occurred. This function is equivalent to the getc

function.

Returns:

Integer (0 - 255).
EOF if end of file or error.

Examples:

while ((c=fgetc (£d)) =
putchar (c}:;

fgets —

EQF) /* print all chars in file */

Format:

#include "STDIO.H"

fgets (buffer, nbr, fd); char *buffer; int nbr, fd;

Description:

The fgets function reads a string of characters from the file associated with file
descriptor 'fd’ and places them into the specified character buffer until a
newline character is encountered. The 'nbr' argument specifies the
maximum number of characters to be read (nbr-1). The newline character is
kept with an appending NULL character.

Returns:

Pointer to 'buffer’ if successful.

NULL if end-of-file occurs.

5-9

CoCo-C Library Functions

fgets
Examples:
while (fgets({string, 80, infile) = NULL)
fputs (string, stdout); /* print all lines in file */

tepen

Format:

#include "STDIO.H™
fopen (fname, mode) char *fname, *mode;

Description:

The fopen function opens a file with the name specified by 'fname' and the type
of file access specified by 'mode’. If the attempt to open a file is successful,
fopen returns a file descripter value (integer) for the open file; otherwise it
returns a NULL.

The 'fname' argument is a string containing the name of the file with an
optional drive number. The 'mode’ argument is a string having one of the
following values:

1 T

- open text for reading
"w" - open text for writing

fi M

The file must already exist if the ‘'mode’ string contains an "r", Otherwise
fopen returns a NULL. The file need not exist if the 'mode’ string contains a

1 "

w". If the file does not exist, a new file is created. If the file does exist, and
‘'mode’ contains a "w", the files contents are erased.

Returns:

File pointer associated with 'fname'.
NULL if 'fname’ could not be opened.

Examples:

fd=fopen ("OUTFILE.DAT", "w');

if ((fd=fopen ("INFILE.DAT:2", "r")) == NULL)
printf ("could not open INFILE.DAT\n");

0-10

CoCo-C Library Functions

- el

fprintf _

Format:

#include "STDIO.H"
fprintf (fd, str, argl, arg2,...) int fd; char *str;

Description:

— The fprintf function performs a formatted print to the file associated with the
file descriptor 'fd'. The format of the output is controlled by the 'str’ string.
Following the 'str' string is an optional list of values to be written to the file.

_ With the exception of the additional 'fd' argument, the fprintf function is
identical to the printf function. The function call printf (str, argl, arg2,...) is
equivalent to fprintf (stdout, str, argl, arg2,...).

Returns:;

Count of total characters written if successful.
ERR if an error occurs.

Note:

Also see printf for a description of the format string.

= Examples:
i = fprintf(fd,"Name: %s, Age: %d\n", "Mr Magoco", 97);
~ if(i == ERR)
fprintf (stdout, "Error writing to file\n");
else

— fprintf (stdout, "%d characters written\n"”, i};

fpute

Format:

— #include "STDIO.H"
fputc (¢, fd) char c; int fd;

- Description:
The fputc function writes the character 'c' to the file associated with the file

_ descriptor 'fd. The fputc function is similar to the putc function. The only
difference is that the fputc function is a function rather than a macro.

0-11

CoCo-C Library Functions

fputc
Returns:;

¢ 1f successful.
EOF if an error occurs.

Examples:

if (fputc('A', £d) == EOF)
printf ("Error writing to file\n");

fputs — — —_

Format;

#include "STDIO.H"
fputs (str, fd) char *str; int fd;

Description:
The fputs function writes a string of characters 'str’ to the file associated with
the file descriptor 'fd’. Each successive character is written to the file until a
null character is found. The null character is not written, and a newline
character is nof appended.

Returns:
EOF if an error occurs.

Examples:

char customer[]="Joce Schmoe™;
i1f {fputs (customer, £d) == EOF)
printf ("Error writing to £file\n");

9-12

CoCo-C Library Functions

fscanf

Format:

#include "STDIO.H"
fscanf (fd, str, argl, arg2,...) int fd; char *str;

Description:

The fscanf function reads formatted input from the file associated with the file
descriptor 'fd'. The format of the input is controlled by the 'str’ string.
Following the 'str’ string is an optional list of variable addresses where the
input data is stored. With the exception of the additional 'fd' argument, the
fscanf function is identical to the scanf function. The function call scanf (str,
argl, arg2,...) is equivalent to fscanf (stdin, str, argl, arg2,...).

Returns:

Number of fields read if successful.
EOF if end of file or an error occurs.

Note:
Also see scanf for a description of the format string.
Examples:

if(fscanf(fd, "%c", &c) == EOF)
printf ("Error reading file");

if(fscanf(fd, "%80s", s8) == EOF)
printf ("Error reading file");

count=(fscanf (£d, "%d %d4d", &x, &y)):
i1f (count == EOF)
printf ("Error reading file");
else
printf("$d fields read successfully\n", count);

5-13

CoCo-C Library Functions

gete i I

Format:

#include "STDIO.H"
gete (fd);

Description:
The getc function reads the next character from the file associated with file
descriptor 'fd’. The character returned is a positive integer in the range of 0 to
255, A returned value of EOF indicates that either the end-of-file has been

reached or that an error has occurred. This function is equivalent to the fgetc
function.

Returns:

Integer (0 - 255)
EQOF if end of file or error.

Examples:

while ((c=getc (£fd)) '= EOF) /* print all chars in file */
putchar(c);

getch

Format:

#include "STDIO.H"
getch ();

Description:
The getch function gets a single character from the standard input and
returns it as a positive integer in the range of 0 to 255. The character returned
is as exactly as it i1s read (no filtering), and it is not echoed to the screen.
Returns:
Integer (0 - 255)

Examples:

while (getch() = '\zr'}; /* Wait for return key */

5-14

CoCo-C Library Functions

gg:g!!gr — T —————— e

Format:

#include "STDIO.H"
getchar ();

Description:
The getchar function gets a single character from the standard input and
returns it as a positive integer in the range of 0 to 127. If the character read is
greater than 127, the MSB is set to zero to maintain ASCII compatibility. This
function echoes the character to the screen.

Returns:
Integer (0 - 127)

Examples:

i=getchar();
printf ("You entered the %c character”, 1i);

gefcurs

Format:
geteurs ();
Description:
The geteurs function returns the current cursor position of the CoCo's text
screen. It will work with all standard CoCo text screen formats (32, 40, or 80
column). The upper left corner of the screen is position 0.

Returns:

Cursor position if using standard text screen.
ERR if not using standard text screen.

Examples:

pos=getcurs();
printf("The end of line is at position %d\n", pos);

8-135

CoCo-C Library Functions

getftyp -) _

Format:

#include "STDIO.H"
getftyp ();

Description:
The getftyp function returns the filetype of the last opened file.

Returns:

0 if the file 1s BASIC
1 1if the file 1s ASCII
2 1if the file 1s BINARY

KExamples:

i1f (getftyp() '= ASCII)
printf ("Not an ASCII file\n"):

getkey = =

Format:
getkey ();
Description:
The getkey function checks the CoCo's keyboard for a keypress. If a key is
currently pressed, a positive integer in the range of 0 to 255 is returned. If no
key is pressed, EOF is returned. The getkey function does not wait for a key to
be pressed. |

Returns:

Integer (0 - 255) if key pressed.
EOF if no key pressed.

Examples:

while (getkey () == EOF); /* Wait for any key */

5-16

CoCo-C Library Function

L

Format;

#include "STDIO.H"
gets (str) char *str;

Description:
The gets function reads a string of characters from the standard input and
places them into the specified character buffer until a newline character is
encountered. The newline character is replaced with a NULL character in the
output buffer. -

Returns:
Pointer to 'str'.

Examples:

gets (keybuff);
getwid¢th
Format:
getwidth ();
Description:
The getwidth function returns the actual screen width of CoCo 3's standard

text screen. This function works only with standard screen widths (32, 40, or
80 column).

Note: CoCo 3 ONLY.
Returns:

Screen width (32, 40, or 80).
ERR if not using standard text screen or not CoCo 3.

Examples:

w=getwidth () ;
printf("This screen is set to %d columns\n", w);

5-17

CaoCo-C Library Functions

iniacia

Format:
iniacia (baud) int baud;
Description:

The iniacia function initializes the ACIA-PAK (RS232) and sets up the baud
rate to the value of 'baud’. The ACIA-PAK is initialized in normal mode, with
8 data bits, 1 stop bit, and no parity. The accepted values for baud are: 110, 300,
600, 1200, 2400, 4800, 9600, and 19200. See also uain and uaout.

Returns:
ERR if baud rates other than above are given.

Examples:

iniacia (9600); /* set ACIA-PAK for 9600 baud */

s niser

Format:
mnmiser (baud) int baud;
Description:
The iniser function initializes the CoCo's internal serial port (printer) and sets
up the baud rate to the value of 'baud’. The accepted values for baud are: 110,
300, 600, 1200, 2400, 4800, and 9600. See also serout.
Note:
9600 baud may be marginal on some CoCo's.
Returns:

ERR if baud rates other than above are given.

Examples:

iniser{(1200); /* set printer port for 1200 baud */

5-18

CoCo-C Library Functions

1s2¢C0CO

Format:
is2coco ();
Description:
The is2coco function returns TRUE if the computer hardware is a CoCo 1 or 2.
Returns:

TRUE if computer is CoCo 1 or 2.
FALSE if computeris not CoCo 1 or 2.

Examples:

if(is2coco()) {
printf("I'm sorry this program is for CoCo 3 only\n");
exit (),

}

is3¢oc¢co OO

Format:
is3coco ();
Description:
The is3coco function returns TRUE if the computer hardware is a CoCo 3.

Returns:

TRUE if computer is CoCo 3.
FALSE 1if computer is not CoCo 3.

Examples:

if(is3coco())
printf ("Welcome to the CoCo 3 XYZ program\n");

CoCo-C Library Functions

isalnum _

Format:
isalnum (¢) char ¢;
Description:

The isalnum function returns TRUE if the character '¢’ is alphanumeric (A'-
IZl, falnizl, Or fO'l_!gT)-

Returns:

TRUE if '¢' is alphanumeric.
FALSE if 'c¢' is not alphanumeriec.

Examples:

while (isalnum(*str)) /* print title in string */
putchar (*str++);

isalphga — -

Format:
isalpha (¢} char c;
Description:

The isalpha function returns TRUE if the character '¢' is alphabetic ('A-'Z' or
Ia?-iz‘l).

Returns:

TRUE if '¢' is alphabetic.
FALSE if ¢’ is not alphabetic.

Examples:

test = isalipha(getchar()):;

a-20

CoCo-C Library Functions

isascii

Format:
isascii {¢) char c;
Description:

The isascii function returns TRUE if the character '¢' is an ASCII character
(decimal values (0-127).

Returns:

TRUE if ‘¢’ is an ASCII character.
FALSE if 'c’ i1s not an ASCII character.

Examples:

if(isascii(inchar)) /* print only if ASCII */
putchar (inchar) ;

iscntrl

Format:
iscntrl (¢) char c;
Description:

The iscntrl function returns TRUE if the character ¢’ is a control character
(ASCII codes 0-31 or 127).

Returns:

TRUE if ‘¢’ is a control character.
FALSE 1if '¢' 1s not a control character.

Examples:

if(iscntrl (inchar)) /* print '.'" if cntrl char */
putchar('.');

5-21

CoCo-C Library Functions

Format:
isdigit (¢) char c;
Description:

The 1sdigit function returns TRUE if the character '¢’ 18 an ASCII digit ('0'-
'9').

Returns:

TRUE if 'c’ is a digit ('0'-'9).
FALSE 1if ‘¢’ 1s not a digit.

Examples:
if{isdigit (inchar}) /* convert digit to binary */

binnum = inchar - 0x30;

islower

Format:
islower (¢) char c;
Description:

The islower function returns TRUE if the character '¢' is a lower-case letter
(ASCII codes 97-122).

Returns:

TRUE if ¢’ is lower-case.
FALSE if '¢c’ is not lower-case.

Examples:

caseflg = islower (inchar);

5-22

CoCo-C Library Functions

isprin

Format:
isprint (¢) char c;
Description:

The isprint function returns TRUE if the character 'c' is a printable character
(ASCII codes 32-126). Spaces are considered printable.

Returns:

TRUE if '¢' is printable.
FALSE if '¢' is not printable.

Examples:
if(isprint (inchar)) /* print char if printable */
putchar (inchar);
else
putchar('.'); /* print '.' if not printable */
ispunct =~ —_—
Format:

ispunct (¢} char c;
Description:
The ispunct function returns TRUE if the character ‘¢’ is a punctuation
character (all ASCII codes except control characters and alphanumeric

characters).

Returns:

TRUE if ‘¢’ is a punctuation character.
FALSE 1f '¢’' 1s not a punctuation character.

Examples:

while (ispunct (*ptr))
ptr++;

o-23

CoCo-C Library Functions

isspace)

Format:
isspace (¢} char c;
Description:
The isspace function returns TRUE if the character ‘¢’ is a white-space
character (ASCII SP, HT, VT, CR, LF, or FF).
TRUE if 'c¢' is white-space character.
FALSE if '¢’ is not white-space character.

Examples:

while(isspace(*ptr))
ptx++;

iswpper

Format:
isupper (¢} char c;
Description:

The isupper function returns TRUE if the character ¢’ 1s a an upper-case
letter (ASCII codes 65-90).

Returns:

TRUE if '¢' is upper-case.
FALSE if 'c’' is not upper case.

Examples:

caseflg = isupper(inchar);

o-24

CoCo-C Library Functions

isxdigit

Format:
isxdigit (¢) char c;
Description:
The isxdigit function returns TRUE if the character ‘¢’ is a hexadecimal digit
('0'-'9', 'A-'F', or 'a-'T).

TRUE if 'c' 1s a hexadecimal digit.
FALSE if '¢' 18 not a hexadecimal digit.

Examples:

hexflg = isxdigit(c);

1 (Y S

Format:
itoa (nbr, str) int nbr; char *str;

Description:
The itoa function converts the number nbr' to its decimal character string
representation at 'str’. The result is left-justified at 'str' with a leading minus
sign if ‘'nbr' is negative. A NULL character terminates the string, which must
be large enough to hold the result.

Returns:
Nothing

Examples:

itoca (1234, numbuf);

9-25

CoCo-C Library Functions

itoab — —

Format:
itoab (nbr, str, base) int nbr; char *str; int base

Description:
The itoab function converts the unsigned integer nbr' to its character string
representation at 'str' in base 'base’. The result is left-justified at 'str'. A
NULL character terminates the string, which must be large enough to hold
the result.

Returns:
Nothing

Examples:

itoab (0x17ff, numbuf, 16):;

itod

Format;
itod (nbr, str, sz) int nbr; char *str; int sz;

Description:
The itod function converts the number 'nbr’ to a signed decimal character
string at 'str’ with a string length of 'sz’. The result is right-justified and
padded with blanks in 'str'. If 'sz’ is greater than zero, a NULL byte is placed
at str{sz - 1]. If ‘sz’ 1s zero, conversion terminates upon the first null byte
found in 'str’. If 'sz’ is less than zero, all 'sz' characters of 'str’ are used. Itod
returns 'str’.

Returns:
Pointer to 'str'.

Examples:

itod (123, numbuf, 7): /* print * 123" */
puts (numbuf) ;

5-26

CoCo-C Library Functions

itou

Format:
itou (nbr, str, sz) int nbr; char *str; int sz;
— Description:

The itou function converts ‘nbr' to an unsigned decimal character string at

'str’ with a string length of 'sz’. The result is right-justified and padded with

blanks in 'str'. If 'sz' is greater than zero, a NULL byte is placed at str{sz - 1].

If 'sz' is zero, conversion terminates upon the first null byte found in 'str’. If
_ 'sz' 18 less than zero, all 'sz' characters of 'str' are used. Itou returns 'str'.

Returns:
Pointer to 'str’.

Examples:

itou (45678, numbuf, 7); /* print " 45678" */
puts (numbuf) ;

itox

Format:
1itox (nbr, str, sz} int nbr; char *str; int sz;
Description:

- The itox function converts nbr' to a hexadecimal character string at 'str' with

a string length of 'sz'. The resulit is right-justified and padded with blanks in
'str’. If 'sz’ is greater than zero, a NULL byte is placed at str[sz - 1]). If 'sz’ is
zero, conversion terminates upon the first null byte found in 'str’. If ‘sz’ 18 less

than zero, all 'sz' characters of 'str' are used. Itox returns 'str'.
Returns:
Pointer to 'str'.

KExamples:

itox(1234, numbuf, 5); /* print " 4D2" */
puts (numbuf) ;

o-27

CoCo-C Library Functions

kill

Format:

kill (fname) char *fname:
Description:
The kill function deletes the file associated with the file pointer 'fname’. An
optional drive number separated by a colon may be used. This function works
like BASIC's KILL command.
Returns:
ERR if unsuccessful delete.

Examples:

if(kill ("DATA.TXT:2") == ERR)
printf ("Cannot delete file\n");

left

Format:
left (str) char *str;
Description:
The left function left-adjusts the character string at 'str’. Starting with the
first nonblank character and proceeding through the null terminator, the
string is moved to the address indicated by 'str'.
Returns:
Nothing

Examples:

left (title);

5-28

CoCo-C Library Functions

1oadm .

Format:

loadm (fname, offset) char *fname; int offset;
Description:
The loadm function loads a machine language file associated with the file
pointer 'fname’ into memory. The 'offset’ value may be any number from
37267 to -32768. For files that do not require an offsef; an offset of 0 must be
used. Caution should be exercised using this function because loadm can
overwrite your program and/or associated library functions.
Returns:
ERR if unsuccessful load.
Exampies:
if (loadm("DATA.BIN", 0) == ERR)
printf ("Cannot load file\n");

iocate

Format:
locate (x, y) nt x, y;
Description:

The locate function positions the CoCo 3's text screen cursor by the x-y
coordinate values of 'x' and 'y'. The cursor column is associated with value 'x’
and the cursor row is associated with value 'y'. The CoCo 3 must be in either

40 or 80 column text mode. This function works the same as BASIC's
LOCATE command.

Note: CoCo 3 ONLY.
Returns:

ERR if not CoCo 3, or if not in 40 or 80 column mode, or if out of range.
Examples:

locate(2,8); /* set cursor on 2nd line, 8th char */

5-29

CoCo-C Library Functions

pad

Format:
pad (str, ch, nbr) char *str; int ch, nbr;
Description:
The pad function places 'nbr' occurrences of the character 'ch’' at the string
pointer ‘str’. The result is left-justified and the size of the 'str buffer must be
at least as large as 'nbr'.
Returns:
Nothing

Examples:

pad(tmpbuf, 0Ox£ff, 1024); /* fill temp buffer w/FF's */

peek

Format:
peek (addr) int addr;
Description:

The peek function reads a single byte from memory addressed at unsigned
‘addr’. The returned value is an integer in the range from 0-255.

Returns:
Byte at address 'addr’.
Examples:

value = peek(0x2000);

5-30

CoCo-C Library Functions

peekw _

Format:
peekw (addr) int addr;
Desecription:
The peekw function reads a word from memory addressed at unsigned 'addr’.
The word is read in the order high-byte:low-byte. The returned value is an
integer in the range from 0-65535.

Returns:

Word at address 'addr’.

Examples:

value = peekw{0x2000);
poke — —
Format:

poke (addr, byte) int addr, byte;
Description:

The poke function writes the byte 'byte’ to memory addressed at unsigned
'addr'. The integer 'byte’ must be in the range from 0-255.

Returns:
Nothing
Examples:

poke (0x8000, 0); /* write 0 to location $8000 */

5-31

CoCo-C Library Functions

pokew — -

Format:
pokew (addr, word) int addr, word;
Description:
The pokew function writes the word 'word' to memory addressed at unsigned
‘addr’. The word is written in the order high-byte:low-byte. The integer 'word’
may be in the range from 0-65535.
Returns:
Nothing

Examples:

pokew (0x8000, 0x1234); /* write $1234 to location $8000 */

printf

Format:

#include "STDIO.H"
printf (str, argl, arg2,...) char *str;

Description:

The printf function performs a formatted print to the CoCo's standard output.
The string 'str’' is a null-terminated control string. Printf writes 'str' to the
standard output, substituting the arguments in ‘str' to special "conversion
specifiers’. These specifiers are represented by a preceding %', and may be
one of the following:

- binary integer

- single character

- signed decimal integer

- octal integer

- character string

- unsigned decimal integer
- hexadecimal number

Moo QLo O

5-32

CoCo-C Library Functions

printf

A numeric "field width" specifier may be inserted between the "%' and the
conversion specifier (ie. %4x). This allows the value to be printed with the
specified field width. If the field width contains a leading '0’, the output wiil be
padded with zeros, otherwise it is padded with spaces. If the field width is a
negative number, the output will be left justified in the field, otherwise the
output is right justified. If no field width is specified, the output will use only
as much space as required.

Returns:
Count of total characters written.

Examples:

printf ("Beans\n");
printf("There has been %u counts\n", count);,

pwtc OO -

Format:

#iinclude "STDIO.H"
pute (¢, fd) char c; int fd;

Description:
The pute function writes the character 'c' to the file associated with the file
descriptor 'fd’. The putc function is similar to the fputc function. The only
difference is that the pute function is a macro rather than a function.

Returns:

¢ if successful.
EOF if an error occurs.

Examples:

if (putc(c, £d) == EOF)
printf("Error writing to file\n");

5-33

CoCo-C Library Functions

putch _

Format;:

#include "STDIO.H"
putch (¢) char c;

Description:
The putch function writes the character ‘¢’ to the standard output. If a
newline character is encountered, it is translated to a carriage return,

followed by a line-feed. This would advance the printing position to the first
column of the next line.

Returns:
Nothing
Examples:

putch{'z"')

z');
putch('\n');

put¢bay OO

Format:

#include "STDIO.H"
putchar (¢) char c;

Description:
The putchar function is similar to the putch function. The only difference is
that if the character 'c¢' 1s greater than 127, the MSB will be set to zero to
maintain ASCII compatibility before the character i1s sent to the standard
output.

Returns:
Nothing

Examples:

putchar('x');
putchar (0xad) ; /* this would ocutput an ASCII space (320} */

5-34

CoCo-C Library Functions

puts O OO —

Format:

#include "STDIO.H"
puts (str) char *str;

Description:
The puts function writes a null-terminated string of characters to the standard
output indicated by string 'str’. A newline character is appended to the string
and the null-terminating byte is not written.

Returns:
Nothing

Examples:
puts("I'm up!\n");
puts (keybuf) ;

rename

Format:
rename (source, dest) char *source, *dest;
Description:
The rename function renames the file associated with the file pointer 'source
to the filename associated with the file pointer 'dest’. An optional drive

number separated by a colon may be used. This function is similar to BASIC's
RENAME command except that the keyword 'TO' is not used.

Returns;
ERR if unsuccessful rename.
Examples:

if(rename ("DATA.TXT", "OLD.TXT") == ERR)
printf ("Cannot rename file\n");

9-39

CoCo-C Library Function

restore e, - vee—

Format:
restore ();

Description:
The restore functions undoes what the settrap function does. This function
restores the CoCo's normal error trapping routines back to its default BASIC
vectors. It is normally called from "CSTART.C" (providing you are using
error trapping) when your program returns toc BASIC.

Returns:
Nothing

Note:
See also settrap.

Examples:

See "CSTART.C”

reverse

Format:
reverse (str) char *str;
Description:

The reverse function reverses the order of the characters in the null-
terminated string at 'str'.

Returns:
Nothing
Examples:

reverse (numbuf) ;

5-36

CoCo-C Library Functions

l‘g!!

Format:
rgb ()
Description:

The rgb function puts the CoCo 3 in RGB video mode. This function operates
the same as BASIC's RGB command.

Note: CoCo 3 ONLY
See also cmp.

Returns:
Nothing

Examples:

rgb () ; /* put CoCo 3 in RGB mode */

rscini

Format:
rscinit (globram, size) char *globram; int size;
Description:

The rscinit function sets up and initializes a user defined buffer required for
CoCo-C's I/0 library. The pointer 'globram’ points to the user defined buffer
which should be at least 128 bytes. The 'size’ value contains the exact size of
the user buffer. This function must be called if any of CoCo-C's DOS functions
or non-standard library functions (unique to CoCo) are to be used within a

given program. By default, rscinit is called within the "CSTART.C" file before
yvour program enters main(). Also "CSTART.C" contains rscinit's 128 byte

buffer.
Returns;
Nothing

Examples:

See "CSTART.C"

5-37

CoCo-C Library Functions

saveim

Format:
savem (fname, start, end, exec) char *fname; int start, end, exec;
Description:
The savem function saves a machine language program or binary data from
memory to the file associated with the file pointer 'fname’. The 'start’ value
contains the program's starting address, the ‘end’ value contains the
program's ending address, and the 'exec’ value contains the program’s

execution address. If no execution address is required, the starting address
may be used. This function 1s similar to BASIC's SAVEM command.

Returns:
ERR 1f unsuccessful save.

Examples:

if (savem("DATA.BIN", O0x4000, Ox407f, 0x4000) == ERR)
printf ("Cannot save file\n"});

scanf

Format:

#include "STDIO.H"
scanf (str, argl, arg2,...) char *str;

Description:

The scanf function reads a series of fields from CoCo's standard input. The
string 'str’ is a null-terminated control string. Scanf reads from the standard
input, substituting the arguments in 'str' to special "conversion specifiers”.
The result is stored at the locations indicated by the arguments. The
conversion specifiers are represented by a preceding ‘%', and may be one of the
following:

- binary integer

- single character

- signed decimal integer

- octal integer

- character string

- unsigned decimal integer
- hexadecimal number

w e oo

5-38

CoCo-C Library Function

scanf

A numeric "field width" specifier may be inserted between the "%' and the
conversion specifier (ie. %4s). This allows the string to be stored with the
maximum specified field width. If no field width is specified, the string will
use as much space as required.

The conversion ends when the next white-space character (blank, tab, or
newline) is encountered, or when the conversion specifier indicating a
maximum field width is reached.

Returns:

Number of fields read.

Examples:
scanf ("sc", &c) ; /* read nonfwhite—space character */
scanf ("%¥80s"”, s); /* read string in 's' max 80 chrs */
scanf("%sd %d", &x, &y); /* read 2 decimal values in x & y */

serout L __ _

Format;

serout (¢) char c;
Description:
The serout function sends the character ‘¢’ to CoCo's internal serial port
(printer). If the printer is not ready after a time-out period, no character 1s
sent and an error status will be returned.
Note:
The iniser function should be called before using this function.

Returns:

'c’ if character successfully sent.
ERR if the printer is not ready.

Examples:

if (serout (NULL) == ERR)
printf ("Printer not ready\n");

5-39

CoCo-C Library Functions

se;!;ra[z

Format:
settrap (address) int address;

Description:
The settrap function replaces BASIC's default error trapping routines with a
user defined function located at 'address’. The CoCo-C's library error
handling routines are replaced as the primary level and the user defined
function is replaced as the secondary level. If a user defined function is not
required, a null function may be used (ie. errfunc () { }).

Returns:
Nothing

Note:

If the #define ERRTRAP is declared within your C program, the error
handling setup will be done automatically by the compiler and "CSTART.C".

See also restore.
Examples:

See "CSTART.C"

S18

Format:
sign (nbr) int nbr;
Description:

The sign function returns minus one, zero, or plus one depending on whether
'nbr' is less than, equal to, or greater than zero.

Returns:

-1 if 'nbr' 1s less than 0
0 1if 'nbr' equals 0
+1 if 'nbr' is greater than 0

5-40

CoCo-C Library Function

sign
Examples:

if(sign(temp) == -1)
coldflg = TRUE;

slow

Format:
slow ();

Description:

The slow function puts the CoCo 3 in normal speed modé. This function has
the same effect as POKE &HFFDS8, 0 in BASIC.

Note:

CoCo 3 ONLY; See also fast.

Returns:
Nothing
Examples:

slow () ; /* back to normal speed */

sprintf .

Format:

#include "STDIO.H"
sprintf (buff, str, argl, arg2,...) char *buff; char *str;

Description:

The sprintf function performs a formatted print to the memory location pointed
to by buff. The format of the output is controlled by the 'str’ string. Following
the 'str' string i1s an optional list of values to be written. The sprintf function is
almost identical to the printf function, except that printf writes to stdout and
sprintf writes to memory, After the last value has been written, the sprintf
function appends a NULL terminating character.

0-41

CoCo-C Library Functions

sprintf

Returns:

Count of total characters written.
Note:

Also see printf for a description of the format string.
Examples:

char buffer[80]:; /* sprintf storage area */
sprintf (buffer, "Name:%s, Age:%d\n", "John Doe", 47);
fputs (buffer, stdout); /* send output to screen */
fputs (buffer, printer); /* and to printer */

sscanf)

Pormat:

#include "STDIO. H"
sscanf (buff, str, argl, arg2,...) char *buff; char *str;

Description:

The sscanf function reads formatted data from memory pointed to by buff. The
reading of the input data is controlled by the 'str’ string. Following the 'str'
string i1s an optional list of variable addresses where the input data is stored.
The sscanf function is almost identical to the scanf function, except that scanf
reads from stdin and sscanf reads from memory.

Returns:
Number of fields read.

Note:

Also see scanf for a description of the format string.
Examples:

char c¢;

int 1;

char stxrf{20];

char bufferf{] = "a 12345 GoodBye";

sscanf (buffer, "%¢ %d %s", &c, &i, &str);
printf("%c %4 %s8", ¢, 1, str);

o-42

CoCo-C Library Functions

strcat

Format;:
strecat (dest, source) char *dest, *source;

Description:
The strcat function appends the string at 'source’ to the end of the string at
'dest’, returning 'dest’. The null character at the end of 'dest' is replaced by
the leading character of 'source’. A NULL character terminates the new
'dest’ string. The space reserved for 'dest’ must be large enough to hold the
result.

Returns:
Pointer to zero terminated 'dest’ string.

Examples:

strcat{(filename, ".a");

strchr

Format:
strchr (str, ¢) char *str, c;
Description:
The strchr function returns a pointer to the first occurrence of the character
'c’ in the string at 'str’. It returns NULL if the character is not found.
Searching ends with the first nuil character.

Returns:

Pointer to character ‘¢’ in string 'str'.
NULL if character '¢' not found.

Examples:

dot = satrchr(filename, '.');

0-43

CoCo-C Library Functions

stremp I — —

Format:
stremp (strl, str2) char *strl, *str2;
Description:
The stremp function returns an integer less than, equal to, or greater than
zero, depending upon the comparisons of two strings. Character-by-character
comparisons are made starting at the left end of the strings until a difference
is found. Comparison is based on the ASCII numeric values of the characters.
Returns:
0 if 'strl’ equals 'str2’
+1 if 'strl’ is greater than 'str2’
-1 if 'str2’' is greater than 'strl’
Examples:

if(!strcmp({inbuff, "helip"))
hlpstat = TRUE;

Strcepy

Format:
strecpy (dest, source) char *dest, ¥source;
Description:
The strepy function copies the string at 'source’ to 'dest’, returning 'dest’. All
data is copied inciuding the null-terminating byte. The space at 'dest’ must be
large enough to hold the string at 'source’.
Returns:
Pointer to zero terminated 'dest’ string.

Examples:

strecpy(filename, "DEMO");

5-44

CoCo-C Library Functions

strlen

Format:
strlen (str) char *str;
Description:

The strlen function returns a count of the number of characters in the string
at 'str'. It does not count the null character that terminates the string.

Returns:

Length of 'str'.

Examples:

length = strlen{(inbuff):;

sthcat

Format:
stneat (dest, source, n) char *dest, ¥*source; int n;

Description:
The stncat function appends 'n' number of characters from the string at
'source’ to the end of the string at 'dest’, returning 'dest’. The null character
at the end of 'dest’ is replaced by the leading character of 'source’. A NULL
character terminates the new 'dest’' string. The space reserved for 'dest’ must
be large enough to hold the result.

Returns:
Pointer te zero terminated 'dest’ string.

Examples:

stncat (filename, extension, 3);

5-45

CoCo-C Library Functions

Stucm

Format:
stnemp (strl, str2, n) char *strl, *str2:; int n;
Description:
The stncmp function returns an integer less than, equal to, or greater than
zero, depending upon the comparisons of two strings. Character-by-character
comparisons are made starting at the left end of the strings until either a
difference is found, or the count of 'n' characters is reached. Comparison is
based on the ASCII numeric values of the characters.
Returns:
0 if 'strl’ equals 'str2’
+1 if 'strl’ is greater than 'str2’
-1 if 'str2' is greater than 'strl’

Examples:

if(!stncmp(fnbuff, filename, 8))
puts ("Please select another name\n");

stnepy

Format:
stnepy (dest, source, n) char *dest, *source; int n;

Description:
The stncpy function copies 'n' number of characters from the string at 'source’
to 'dest’, returning 'dest’. If the source string is too short, null padding occurs.
If it 1s too long, it is truncated in 'dest’. A NULL character is appended to the
end of the destination string.

Returns:
Pointer to zero terminated 'dest’ string.

Examples:

stncpy (outbuff, inbuff, 16);

5-46

CoCo-C Library Functions

toascii

Format:
toascii (¢) char c;
Description:

The toascii function returns the character '¢’ as an ASCII character
equivalent in the ASCII character set.

Returns:
ASCII equivalent of 'c'.
Examples:

nxtchar = toascii(inchar);

tolower

Format:
tolower (¢} char c;
Description:

The tolower function returns the lower-case equivalent of 'c’ if 'c' 1s an upper-
case letter; otherwise, it returns ‘¢’ unchanged.

Returns:
Lower-case equivalent of 'c.
Examples:

putchar (tolower (outchar));

5-47

CoCo-C Library Functions

foupper . _

Format:
toupper (¢) char c;
Description:

The toupper function returns the upper-case equivalent of ‘¢’ if 'c’' is a lower-
case letter; otherwise, it returns ‘¢’ unchanged.

Returns:
Upper-case equivalent of 'c'.
Examples:

inchar = toupper(getchar());

uatn

Format:
uain ();
Description:
The uain function gets a single character from the external ACIA-PAK
(RS232). This function does not wait for the character. If the character is
ready, a positive integer in the range from 0-255 1s returned, otherwise an ERR
is returned. The character returned is as exactly as it is read (no filtering).
Note:
The iniacia function must be called before using this function.

Returns:

Integer (0 - 2565)
ERR if character is not ready.

Examples:

while({(c=uain()) '= ERR); /* wait for char from ACIA-PAK */

0-48

CoCo-C Library Functions

toascii

Format;
toascii (¢) char c;
= Description:

The toascii function returns the character ‘¢’ as an ASCII character
- equivalent in the ASCII character set.

Returns:
ASCII equivalent of 'c'.
_ Examples:

nxtchar = toascii(inchar):

tolower

Format:
tolower (¢) char c;
Description:

The tolower function returns the lower-case equivalent of '¢' if 'c’ is an upper-
case letter; otherwise, it returns ‘¢’ unchanged.

Returns:

Lower-case equivalent of 'c'.
Examples:

putchar (tolower (outchar));

o-47

CoCo-C Library Functions

toupper

Format:
toupper {c¢) char ¢;
Description:

The toupper function returns the upper-case equivalent of '¢' if 'c¢' is a lower-
case letter; otherwise, 1t returns 'c¢’ unchanged.

Returns:
Upper-case equivalent of 'c'.
Examples:

inchar = toupper(getchar());

uain

Format:
uain {);
Description:

The uain function gets a single character from the external ACIA-PAK
(RS232). This function does not wait for the character. If the character is
ready, a positive integer in the range from 0-255 is returned, otherwise an ERR
1s returned. The character returned is as exactly as it is read (no filtering).

Note:
The iniacia function must be called before using this function.

Returns:

Integer (0 - 255)
ERR if character is not ready.

Examples:

while((c=uain())} 1= ERR); /* wait for char from ACIA-PAK */

0-48

CoCo-C Library Functions

uaout

Format:
uaout (¢) char c;
Description:

The uaout function sends the character '¢' to the external ACIA-PAK (RS232).
No filtering or translations of char 'c’ are performed during this function call.

Note:

The iniacia function must be called before using this function.
Returns:
Nothing

Examples:

while (*buf) uaout (*buf++); /* send all chars in buf to ACIA */

utoi

Format:
utoi (str, nbr) char *str; int *nbr;
Description:
The utoi function converts the unsigned decimal number represented by the
character string at 'str' to an integer at nbr' and returns the length of the
numeric field found. Conversion stops at the end of the string or upon any
non-decimal character. With 16-bit integers, utoi will use at most five digits.

Returns:

Field length of mbr'.
ERR on error.

Examples:

length = utoi("56789",&n);

5-49

CoCo-C Library Functions

xtol

Format:
xtoi (str, nbr) char *str; int *nbr;
Description:
The xtoi function converts the hexadecimal number in the character string at
'str' to an integer at 'nbr' and returns the length of the hexadecimal field
found. Conversion stops when it encounters a non-hexadecimal digit in 'str'.

With 16-bit integers, xtoi will use at most four digits.

Returns:

Field length of nbr’'.
ERR on error.

Examples:

length = XxXtoi("7FFF",&n);

0-900

CoCo-ASM Assembler

1. Introduction:

CoCo-ASM is a two-pass symbolic assembler for the CoCo 1, 2 or 3. Although
originally designed for CoCo-C's assembly language output, it can also be used as
a stand-alone assembler for creating machine language files.

CoCo-ASM conforms to a "Motorolla-Style” syntax for the 6809 microprocessor.
The assembler reads as input an assembly language source file (ASCII text) and
produces as output a machine language binary file ready for LOADM and EXEC.
The assembler also provides options for a formatted list file output and/or a
symbol table listing.

2. Assembler Specifications:
2.1 Symbols:

Symbols may consist of an ASCII character or a string of ASCII
characters. There are no restrictions of which characters may be used, but
to avoid confusion within the assembler, 'operator’ characters should be
avoided.

Symbol names are limited to seven characters. More than seven characters
may be used, but the remaining characters will be ignored.

2.2 Source File Format.
CoCo-ASM expects source input lines to be in the following format:
<label> <instruction> <operands> <commeni>
Labels (symbols) must always be in column one. Each field must be
separated from its adjacent field. A minimum of one space or one tab must

be used as a field delimiter.

If the instruction requires an operand(s), then the operand is required and
must be placed in the operand filed.

The comment field is optional and is ignored by the assembler. Any spaces
or tabs used in the comment field may be used only as delimiters in a text
string, if not it would be recognized as the end of the operand field.

An asterisk '"*' in the label field (column one) may be used as a comment.
Any text following the asterisk is ignored by the assembler.

CoCo-ASM _Assembler

3.

2.3 Expressions:

All expressions are evaluated from left to right, using 16 bit values. If an 8
bit value is evaluated within an expression, the lower 8 bits will be used.
Spaces or tabs are not allowed within an expression, unless they are
contained within a text string.

CoCo-ASM supports the following expression operators:

2.3.1 unary operators: examples:
- negation ~VALUE
~ one's complement ~VALUE
= swaps high and low byte of value =VALUE

2.3.2 binary operators:

+ addition VALUE1+4+VALUE2

- subtraction VALUE1-VALUE2

* multiplication VALUE1*VALUE2

/ division VALUE1l/VALUE2

\ modulo, ie. remainder from division VALUE1l\VALUE2

| logical inclusive OR VALUEl | VALUE2

A logical exclusive OR VALUE1~VALUE2

& logical AND VALUE1l&VALUEZ2
2.3.3 values in expressions:

nnn decimal number 123

$hhh hexidecimal number $1A

%bbb binary number $11001010

@oo00 octal number @177

‘cc’ ASCII characters 'A

<label> label value from symbol table VALUE

* value of current program counter EQU *

Addressing Modes:

The CoCo-ASM assembler fully supports the addressing modes which are
availlable to the 6809 microprocessor. These modes are determined by the use of
the instructions and/or its operands.

3.1 Immediate Addressing:

Any operand which is preceded by a pound sign ('#), is determined to be an
immediate value. For instructions requiring only 8 bits of immediate data,
the lower eight bits of the value will be used. The upper 8 bits of a value can
be accessed by preceding it with a '=' (this swaps the high and low bytes).

6-2

CoCo-ASM Assembler

3.2 Direct/Extended Addressing:

Any operand which is preceded by a left angle bracket ('<'), is determined to
be a DIRECT (8 bit) address. This will reference a value in the memory
page indicated by the Direct Page (DP) register.

If an operand is preceded by a right angle bracket ('>'), it is determined to
be an ABSOLUTE or EXTENDED (16 bit) address.

If no addressing mode is specified, the assembler will use DIRECT
addressing if the high byte of the values match the last SETDP, otherwise
the ABSOLUTE addressing mode will be used.

3.3 Indirect Addressing:

Indirect addressing is indicated by placing the addressing value in square
braces ([]') ie. LDA [$F000].

4. Pseudo-ops:

The CoCo0-ASM assembler supports many of the standard 6809 pseudo-ops as well
as others which are unique to the assembler. The following is a list of all the
pseudo-ops supported by CoCo-ASM:

NAME <text string>

This pseudo-op stores the name of the program and displays it at the top of
each of each page in the listing. By default, 'NAME' is set to the file name
being assembled. Lines containing this pseudo-op will not appear in the
listing.

PAGE

This pseudo-op forces a page eject in the listing. Lines containing this
pseudo-op will not appear in the listing.

NOLIST

This pseudo-op suppresses the source listing in the program, preventing
any further lines from being displayed.

LIST

This pseudo-op re-enables the output listing, following a NOLIST pseudo-
op.

6-3

CoCo-ASM Assembler

END
The END pseudo-op was included for compatibility with other assemblers.
CoCo-ASM simply ignores the END pseudo-op. (Normally, this would
indicate the end of assembly and any lines following END would be
ignored.)

<label> EQU <expression>

The label of this pseudo-op is assigned to the value of the operand
expression.

ORG <expression>
This pseudo-op sets the assembler's internal program counter to the value
of the operand expression. All code following ORG will be generated
starting at that address. If code is generated without an ORG expression, it
will start at address $0000. :

REORG
This pseudo-op resefs the assembler’'s internal program counter to the
value it had before just before the last ORG expression. It is used to
confinue assembly which preceded the last ORG.

FCB <exprl>[,<expr2>,<exprd>,...]

Form Constant Byte. This pseudo-op places the values of the operand
expressions into memory as single byte constants.

FDB <exprl>[,<expr2>,<expr3s>,...]

Form Double Byte. This pseudo-op places the values of the operand
expressions into memory as double byte constants.

RMB <expression>

Reserve Memory Bytes. This pseudo-op reserves a number of bytes equat to
the value of the operand expression. No code is generated, and the area is
not aitered when the resulting binary file is loaded.

FCC 'text string’

Form Constant Character. This pseudo-op places the string into memory
as ASCII byte values. Any character which is not part of the text string
may be used as delimiters. ie. "This is text" or /This is text/.

6-4

CoCo-ASM Assembler

FCCZ 'text string’

This pseudo-op is almost identical to the FCC pseudo-op, with the exception
that FCCZ has a zero byte ($00) appended to it.

SETDP <expression>

The SETDP pseudo-op sets the assembler's default direct page register to
the 8 bit value of <expression>. This is used to inform the assembler what
value is in the DP register, so that direct addressing may be used. If the
value of <expression> is 1S greater than 255, or less than 0, the default direct
page register will be disabled, and all unspecified memory addresses will
use extended addressing. If the SETDP pseudo-op is not used, direct page
addressing will be disabled.

5. Using the Assembler:

The assembler is first invoked by running CoCo-C's command coordinator. Type
RUN "CC <ENTER>. After the menu appears, select A (for assemble). The
assembler will automatically load and execute and request you for the input file:

Input Filename 7?2

Enter the name of your assembly language source file. Examples:

TEST.ASM read input file "TEST.ASM" from default drive
MYFILE.ASM:2 read input file "MYFILE.ASM" from drive 2

Next the assembler will ask you for the output file:

OQutput Filename ?

Enter any valid name as your binary output file. Examples:

TEST.BIN create output file "TEST.BIN" on default drive
MYFILE.OBJ: 2 create output file "MYFILE.OBJ" on drive 2

If no drive designator is specified, the output file will be created on the default
drive,

‘Next the assembler will ask you for the assembly options:
Options 7
One or more assembler options may be selected at this time. Each option contains

one character. Spaces or commas may be used as delimiters. After selecting the
desired option(s) hit <ENTER>. If no options are needed, just hit <ENTER>.

6-5

CoCo-ASM_ Assembler

Assembler Options:

L. = List Output defaults to screen

F = To File all output is directed to the .LST output file
S = Symbol Table includes symbol table in .LST output file

P = Pause on Error

A = Alarm on Error

Entering a ? <ENTER> will dispiay the options if you forget what they are.

After the <ENTER> key is pressed, the assembler will begin compiling your code.
Any errors will be displayed in the output listing. The assembler will pause on
error if the 'P' option was selected. Hitting <ENTER> resumes the assembly,
while the <BREAK> key terminates the assembly.

When the assembly has completed, and assuming there were no errors in your
source file, the assembler will respond with: :

No Errors Found
Hit any Key to Return to Menu

At this time, hitting any key will return you to CoCo-C's command coordinator.

If you assembled a file that does not require the CoCo-C library, you may LOADM

and EXEC your file, otherwise you need to run CoCo-C's Library Linker. This is
explained in the CoCo-C Tinker section of this manual.

If you selected the 'L’ and 'F' options, your list output file will appear on the same
drive, with the same name as your binary file with a .LST extension.

Note: Hitting the <BREAK> key at any time while the assembler is running will
terminate the assembly and return you to the command coordinator.

6-6

6. Error Messages:

When CoCo0-ASM detects an error in the source code, 1t displays a descriptive
error message indicating the possible cause of error. The error message(s) will be
contained in the source listing on the line immediately following the line
containing the error.

If any forward references are found in any of the EQU, ORG, or RMB pseudo-ops,
an 'Undefined symbol' error will be displayed in the first pass of the assembly at
the top of the listing,.
CoCo-ASM produces the following error messages:
6.1 Duplicate symbol: <symbol name>

The displayed symbol has been defined more than once within this assembly.
6.2 Symbol table overflow

The symbol table has become full due to too many symbols within the program.
6.3 Unknown opcode

The indicated line does not contain a valid opcode or assembler directive within
the instruction field.

6.4 Out of range

The operand is not within the range of values (ie. +127 to -128) which can be
used with the instruction.

6.5 Illegal addr mode

The instruction on the indicated line does not apply with the addressing mode
specified in the operand field.

6.6 Illegal register use

The instruction on the indicated line contains an unrecognized register, or the
register is out of context specified by the instruction.

6.7 Undefined symbol

A symbol referenced in the indicated line has not been defined within this
assembly, and has no value.

6-7

CoCo-ASM Assembier

6.8 Invalid expression

The indicated line has an expression which contains a non-valid operator
character.

6.9 Illegal argument
Thee operand on the indicated line is not in the proper format.
6.10 Invahd delimmter

The indicated line contains a character string constant which does not have a
proper closing delimiter.

6-8

CoCo-C Library Linker

1. Introduction:

The purpose of the Library Linker is to combine CoCo-C's 80+ function library
along with your compiled and assembled program. The entire function library is
contained in the file "CLIB.BIN" on your distribution disk. The file size of this
fully relocatable library is only slightly larger than 8K bytes.

The file "CLIB.INC" 1s the ASCII text file that contains the entry point addresses
of each function in the library. These entry points are contained in a jump tabie at
the very beginning of "CLIB.BIN". By default, the CoCo-C Compiler
automatically includes "CLIB.INC" at the very end of your compiled code. This in
turn informs the CoCo-ASM assembler where each function address in the
library is located.

When linking i1s performed, the CoCo-C function library is appended to the end of

your binary file. The resulting file 1s a stand-alone machine language program
ready for LOADM and EXEC.

2. Using the Library Linker:

The linker is first invoked by running CoCo-C's command coordinator. Type
RUN "CC <ENTER>. After the menu appears, select LL (for link). The linker will
automatically load and execute and request you for the input file:

Enter ML 'C' File -

Enter the name of the binary file in which your C program was compiled and
assembled to. Examples:

TEST.BIN read input file "TEST.BIN" from default drive
MYFILE.OBJ:2 read input file "MYFILE.OBJ" from drive 2

Note: Hitting <ENTER> at the prompt without a filename will terminate the
linker.

Next the linker will ask you for the output file:
Enter ML Out File -

Enter any valid name as your binary output file. KXxamples:

TEST.BIN create output file "TEST.BIN" on default drive
MYFILE.BIN:2 create output file "MYFILE.BIN" on drive 2
Warning:

If your input file and output file have the same name, the linker will overwrite
the input file, replacing it with the newly created linked file.

7-1

CoCo-C Library Linker

After the <ENTER> key is pressed, the linker will begin linking your code. You
should then see the following messages:

Loading Files...
Saving New File...

"TEST.BIN" Created

This would indicate that the linker has successfully linked your code, the next
message would be:

Hit any Key to Return to Menu

At this time, hitting any key will return you to CoCo-C's command coordinator.

From the command coordinator, select R (for re-boot). You may now LOADM and
EXEC your program.

3. Creating Non-Library Programs:

With CoCo-C 1t is possible to create programs which do not rely upon the CoCo-C
function library. This should only be necessary when creating programs that
need not communicate via the standard I/O (ie. user created graphics). An
alternate reason would be when compiling for non-CoCo ROM-based applications
(ie. stand alone single board computers) or applications that have very strict
memory constraints.

As an option, the CoCo-C Compiler provides a method of disabling the inclusion of
"CLIB.INC" in your compiled output code. By defining the following:

#define NOCLIB

at the beginning of your C program (before the #includes), will instruct the
compiler to not include "CLIB.INC" at the end of your compiled code. This, of
course, will prohibit the use of all the functions contained within the CoCo-C
Library.

If the need arises to use some of the standard C functions, you may extract them
from the source file "STDLIB.C" on the distribution disk. Also, the source file
"CHARIO.ASM" contains "character in" and "character out’ routines, and may
be included within your program.

By not having the CoCo-C Library appended to your program, there is no need to
run the linker. You may simply LOADM and EXEC your program after it
assembles.

7-2

CoCo-C Examples

1. Preliminary:
In the following examples, we will walk you through the steps necessary for
creating two machine language programs using CoCo-C. Any differences

between the CoCo 2 and CoCo 3 versions will be indicated. First the following
assumptions must be made:

1. Your monitor must be capable of displaying 80 columns of text (CoCo 3).

2. You are using a single-drive system.

3. You are using a backup copy of CoCo-C.

2. Example 1 (HELLO.C):

In this example, we will create the infamous "hello world" program. This
program will require the use of the editor and will not need the CoCo-C Library.

2.1 Insert the backup copy of CoCo-C into the disk drive.
2.2 Type RUN"CC <ENTER>
2.3 Enter E (for edit)

24 You should now be in Ultra Editor's main menu or in Line Editor's
'Filename:' prompt. At the Filename: prompt, type the following:

Ultra Editor (CoCo 3): Line Editor (CoCo 2):
HELLO.C <ENTER> <ENTER>

2.5 Now you should be in the edit mode. At the cursor, type in the following text
(do not include spaces that surround <ENTER>).

Ultra Editor:

<ENTER>

#define NOCLIB <ENTER>

$include "CSTART.C" <ENTER>

finclude "CHARIO.ASM" <ENTER> <ENTER>

main{) <ALT < > <ENTER>
putstr ("HELLO WORLD"); <ENTER>
<ALT > > <ENTER> <ENTER>

putstr(str) char #*str; <ALT < > <ENTER>

while{*str) charout {*str++); <ENTER>
<ALT > > <ENTER>

8-1

CoCo-C Examples

Line Editor:

I
#define NOCLIE <ENTER>
#$#include "CSTART.C" <ENTER>
finclude "CHARIO.ASM" <ENTER> <ENTER>
main{) <SHIFT CLEAR> <ENTER>
putstr ("HELLO WORLD"); <ENTER>
<CLEAR> <ENTER> <ENTER>
putstr(str) char *str; <SHIFT CLEAR> <ENTER>

while{(*str) charout (*str++); <ENTER>
<CLEAR> <ENTER> <BREAK>

2.6 Examine the text. It should look like this:

#define NOCLIR
$#include "CSTART.CT™
finclude "CHARIQO.ASM™

main ()
putstr ("HELLO WORLD"™);

}

putstr(str) char *str; {
while(*str) charout (*str++);

}
Ultra Editor:

2.7 Next type <CTRL Q > to exit edit mode.
2.8 In Ultra Editor's main menu enter S (for save buffer).
2.9 Next hit <ENTER> at the 'Filename' prompt.
2.10 Now hit C to return to CoCo-C's Command Coordinator.
Line Editor:
2.7 Next type Q to exit edit mode.
2.8 In Line Editor's main menu, enter W (write buffer as new file).
29 At the WRITE AS:' prompt, type HELLO.C <ENTER>

2,10 After the file is saved, you will automatically return to the Command
Coordinator.

8 -2

CoCo-C Examples

2.11 Next enter C (for compile).

2.12 After the compiler loads, you should see the CoCo-C copyright message,
followed by an 'Options' prompt. Respond with the following:

Options ? <ENTER>

Output Filename 7?7 HELLO.ASM <ENTER>
Input Filename 7? HELLO.C <ENTER>
Input Filename 7?7 <ENTER>

2.13 The compiler will begin compiling immediately after the input file has been
entered. After entering the last <KNTER>, the following messages should
be displayed:

xxx Lines Compiled
N¢o Errors Found

Hit any Key to Return to Menu

2.14 At this time, hit any key. You should now be back in the Command
Coordinator.

2.15 Next enter A (for assemble).

2.16 After the assembler loads, you should see the CoCo-ASM copyright
message, followed by an 'Input Filename' prompt. Respond with the
following:

Input Filename 7?7 HELLO.ASM <ENTER>
Output Filename ? HELLO.BIN <ENTER>
Options ? <ENTER>

2.17 After entering the last <ENTER> the compiler will assemble the
"HELLO.ASM" file. The following messages should be displayed:

* PASS 1 *
* PASS 2 *

No Errors Found
Hit any Key t¢o Return to Menu

2.18 Again, hit any key to bring you back to the Command Coordinator.

2.19 Since this example requires no linking, you may return back to BASIC.
Now enter R (for re-boot) to exit CoCo-C.

2.20 You may now test your program. Enter the following:

LOADM "HELLO
EXEC

8-3

CoCo-C Examples

3.

The "HELLO WORLD" message should now be displayed.

Congratulations on creating your first CoCo-C program!

Example 2 (FILELST.C).

In this example, we will compile, assemble, and link the program "FILELST.C"
which is included on the distribution disk. Since this program is already written,
the editor will not be required. After the procedure is complete, you may use this
useful program to examine ASCII text files on the screen, or send them to your

printer.

3.1 Insert the backup copy of CoCo-C into the disk drive.

3.2 Type RUN"CC <ENTER>

3.3 Now enter C (for compile).

3.4 After the compiler loads, you should see the CoCo-C copyright message,
followed by an 'Options' prompt. Respond with the following:;
Options 7? <ENTER>
Qutput Filename 7 FILELST.ASM <ENTER>
Input Fillename 7 FILELST.C <ENTER>
Input Filename 7? <ENTER>

3.5 The compiler will begin compiling immediately after the input file has been

- entered. After entering the last <ENTER>, the following messages should

be displayed:
xxX Lines Compiled
No Errors Found
Hit any Key to Return to Menu

3.6 At this time, hit any key. You should now be back in the Command
Coordinator.

3.7 Next enter A (for assemble).

3.8 After the assembler loads, you should see the CoCo-ASM copyright

message, followed by an 'Input Filename' prompt. Respond with the
following:

Input Filename 7 FILELST.ASM <ENTER>
Output Filename 7? FILELST.OBJ <ENTER>
Options 7 <ENTER>

8-4

CoCo-C Exampies

3.9 After entering the last <ENTER> the compiler will assemble the
"FILELST.ASM" file. The following messages should be displayed:

* PASS 1 *
* PASS 2 *

No Errcors Found
Hit any Key to Return to Menu

3.10 Again, hit any key to bring you back to the Command Coordinator.
3.11 Now enter L (for Iink).

3.12 After the linker loads, you should see the CoCo-C Library Linker copyright
message, followed by an 'Enter ML 'C’ file prompt’. Respond with the
following:

Enter ML 'C' File - FILELST.0BJ <ENTER>
Enter ML Out File ~ FILELST.BIN <ENTER>

3.13 After entering the last <ENTER> the linker will link the "FILELST.OBJ"
file. The following messages shouid be displayed:

Loading Files...
Saving New File, ..

"FILELST.BIN" Created

Hit any Key to Return to Menu
3.14 Once again, hit any key .to bring you back to the Command Coordinator.
3.15 Now enter R (for re-boot) to exit CoCo-C.

3.16 You may now test your program. Enter the following:

LOADM "FILELST
EXEC

8-5

CoCo-C_Examples

4. Using the ASCII File Lister:

The included ASCII file lister is provided to view ASCII text files (C, assembler,
etc.) to either the screen, or to the printer. It is self-prompting and will keep
requesting input files until a non-Yes answer is entered.

4.1 Screen OQutput:

During the displaying of text, you may hit the spacebar to pause the display.
Hifting the spacebar again resumes the display. The <BREAK> key
terminates the display.

4.2 Printer Output:

The printer output defaults to 2400 baud. As an option, you may add a Line
Feed after each Carriage Return (this eliminates setting DIP switches on your
printer). If the printer is not ready while sending data, an error message will
be displayed on the screen. Your options are: -

1. Make the printer ready (select it, add paper, etc.)
2. Hit <BREAK> to exit the lister.

4.3 Making Modifications to the Lister:

Since the ASCII File Lister is supplied in C source, it may be modified to suit
your needs. For example, you may want to change the screen width, change
the foreground and background colors, or even change the printer baud rate,
Margins, page numbering and title headers can improve the printer output if
you feel ambitious. Making these or any modifications on an existing C
program is the best way to get familiar with C and the CoCo-C Compiler.

8-6

